

AECOM

10 Patewood Drive, Building VI, Suite 500, Greenville, SC 29615 T 864.234.3000 F 864.234.3069 www.aecom.com

March 30, 2009

Mr. Ryan Benefield Chief of Hazardous Waste Division Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, AR 72118-5317

Subject: Wormald Site Investigation Report

Tyco Safety Products - Former Cedar Chemical Facility

Helena – West Helena, Arkansas State EPA ID No. ARD990660649

Dear Mr. Benefield:

On behalf of Tyco Safety Products – Ansul Incorporated, AECOM is pleased to submit two copies of this Wormald Site Investigation Report that summarizes the subsurface soil sampling activities and analytical results for soil samples collected from Site 3- Stormwater Ditches at the Former Cedar Chemicals Facility located in Helena – West Helena, Arkansas (Figure 1). The Wormald Site Investigation was conducted in accordance with the Wormald Site Investigation Work Plan dated January 22, 2009, the subsequent Arkansas Department of Environmental Quality approval letter dated January 29, 2009, and the Wormald Separate Agreement Pursuant to Consent Administrative Order LIS No. 07-027 for the Conduct of a Site Investigation and Feasibility Study (Wormald Separate Agreement) between the Arkansas Department of Environmental Quality (ADEQ), and Ansul Incorporated, Wormald U.S., Inc dated January 9, 2009. A summary of field activities, soil sampling procedures, and analytical results is provided below.

Investigation Objectives

During the 1996 Facility Investigation, dinoseb was reported at a concentration of 13,000 milligrams per kilogram (mg/kg) in subsurface soil sample 3SB-6 (4 to 8 feet below ground surface (bgs)) and identified as a contaminant of concern (COC) for Site 3 in the Risk Assessment (EnSafe, 1996; ADEQ, 2005). The Wormald Site Investigation focused on the collection of additional subsurface soil samples at Site 3 to confirm the concentration of dinoseb in subsurface soil at historic sample location 3SB-6 and to evaluate possible dinoseb concentrations in the vicinity of 3SB-6.

Site Reconnaissance

Prior to implementing field work, soil boring locations were surveyed and staked by Smith and Weiland Surveyors, an Arkansas licensed land surveyor. Utility clearance for all environmental sample locations was provided by Arkansas One-Call prior to intrusive work. Site surveying and utility clearance activities were conducted on March 4, 2009 and were overseen by the AECOM Project Geologist/Field Manager.

Borehole Installation, Lithologic Sampling and Headspace Screening

On March 5, 2009, five soil borings (TSB-1 through TSB-5) were installed within Site 3 for the collection of soil samples for dinoseb analysis (Figure 2). The additional analytical data were needed to confirm the reported concentration of dinoseb (13,000 mg/kg) at historical sample location 3SB-6 (EnSafe, 1996)) and to assess the occurrence of dinoseb concentrations in the subsurface.

Soil borings were installed by Tri-State Testing Services, Inc., located in Memphis, Tennessee, using a Direct Push Technology (DPT) Geoprobe[®] rig. Continuous soil samples were collected from each soil boring and were logged for lithology by an AECOM Geologist. Lithologic classification was conducted in accordance with the Unified Soil Classification System (USCS) and soil descriptions were recorded on Test Boring Reports (Appendix A). A Photo Ionization Detector (PID) Organic Vapor Analyzer (OVA) was used to assess the qualitative concentration of potential volatile organic vapors present in vadose zone soil core samples. PID headspace results were recorded on Test Boring Reports (Appendix A).

Soil Sampling Program

Five soil borings, designated TSB-1 through TSB-5 (Figure 2), were installed at Site 3 to confirm and/or assess the occurrence of dinoseb concentrations in subsurface soil at historic soil sample location 3SB-6, collected from 4-8 feet bgs in lithologic boring LB-6 during the 1996 Facility Investigation (EnSafe). One primary soil sample was collected from 4-8 feet bgs at each boring for analysis of dinoseb. Two additional soil samples, one from 1-4 feet bgs and one from 8-12 feet bgs, were collected from TSB-1 and held for analysis pending dinoseb results from the 4-8 foot interval.

Soil was collected from the desired sample interval at each boring using DPT Geoprobe[®] rig with disposable acetate sample sleeves lining the core barrel. Soil samples were collected from the acetate sleeve using a decontaminated stainless steel spoon, were placed new, disposable zip-lock bags, and were thoroughly homogenized in the bags prior to containerization. A portion of the sample was later screened for organic vapors utilizing a PID OVA. Soil samples for laboratory analysis were containerized in laboratory supplied bottleware and placed in an ice filled cooler pending delivery to the laboratory.

Soil samples were analyzed for dinoseb by Environmental Testing and Consulting, Inc., located in Memphis, Tennessee, using Environmental Protection Agency (EPA) SW846 Method 8151A. Environmental Testing and Consulting, Inc. has been certified under the ADEQ Laboratory Certification Program and a copy of the certification is provided in Appendix B.

QA/QC Program

The quality assurance/quality control (QA/QC) program was implemented to provide a system of documented checks that ensures the authenticity and validity of the environmental data. QA/QC samples, including one field duplicate (soil) sample, one equipment rinsate blank sample, and one matrix spike/matrix spike duplicate (MS/MSD) sample, were collected and analyzed for dinoseb by EPA SW-846 Method 8151A. Results from the QA/QC samples were used during the data validation process as discussed in Data Validation Report (DVR) in Appendix C.

Analytical Test Results

Table 1 summarizes the results for dinoseb in subsurface soil samples collected from the 4 to 8 foot depth interval at Site 3. Dinoseb was reported in all samples at concentrations ranging from 10.6 milligrams per kilogram (mg/kg) in TSB-4 to 44.2 mg/kg at TSB-1. All results were significantly below the EPA Region 6 Medium-Specific Screening Level (MSL; 680 mg/kg) for dinoseb in subsurface soil. Soil samples from the 1 to 4 foot and 8 to 12 foot interval at TSB-1 were prepped and held pending the analysis of the 4 to 8 foot sample but were not analyzed since the concentration of dinoseb at TSB-1 (4 to 8 foot) was less than the EPA Region 6 MSL and required no further delineation.

Three soil samples (TSB-3, TSB-4, and TSB-5) were qualified by the laboratory with a "J", indicating they are estimated values between the method detection limit (MDL) and the reporting limit (RL). The relative percent difference between the primary sample (TSB-1) and the field duplicate sample (TSB-1-a) was not calculated since the value reported for the field duplicate sample was qualified as an estimated value ("J" flagged). Results of the data validation indicate the data associated with this laboratory batch should be considered compliant and adequate for its intended use. The Data Validation Report is provided in Appendix C along with the Chain of Custody forms and analytical laboratory Certificate of Analysis.

Solid IDW Characterization and Management

All sampling equipment was pre-cleaned and wrapped in plastic prior to mobilization; therefore, on-Site equipment decontamination was not necessary. Used PPE, disposable sampling equipment, and other miscellaneous trash was consolidated in trash bags at the end of each day and sealed for subsequent off-Site disposal.

Soil generated during soil sampling activities was contained in a new 55-gallon drum approved by the Department of Transportation (DOT) and staged at a central location in accordance with all Federal, State and local requirements. The drum was labeled to indicate the type of material contained, place of origin, Site number and location, boring numbers, and date on which materials were initially placed in the container. An Investigation Derived Waste (IDW) Management Form was completed to document IDW generated during field activities and is include in Appendix A.

At the completion of field activities, a representative sample of solid IDW was collected for analysis of toxicity characteristic leaching procedure (TCLP) volatile organic compounds (VOCs) by EPA SW-846 Method 8260B, TCLP semi-volatile organic compounds (SVOCs) by EPA SW-846 Method 8270C, TCLP pesticides by EPA SW-846 Method 8081A, TCLP herbicides by EPA SW-846 8151A, and TCLP metals by EPA SW-846 Methods 6010B/7470A to evaluate disposal options. The TCLP results are presented in Table 2 and Certificates of Analysis are presented in Appendix C. The IDW soil sample results were below the Hazardous Waste Characterization Thresholds for all constituents analyzed. The drum of IDW soil is currently staged on Site pending the selection and scheduling of an IDW disposal contractor. Once the disposal contractor has been procured, the drum of soil will be disposed of in accordance with Federal, State, and local requirements.

Conclusions

Although dinoseb was detected (or estimated "J" flag) in soil samples from borings TSB-1 through TSB-5, all reported concentrations were below the EPA Region 6 MSL for subsurface soil. Furthermore, confirmation sampling at TSB-1, which is co-located with historic soil sample 3SB-6, indicates that the

dinoseb concentration of 13,000 mg/kg reported for 3SB-6 (4-8 feet) in the FI (EnSafe, 1996), is erroneous. Based on this information, the assessment of dinoseb in soil at Site 3 is complete and all results are below the EPA Region 6 MSL.

Upon approval of this *Wormald Site Investigation Report*, Tyco Safety Products – Ansul Incorporated will prepare a Feasibility Study for submittal to the ADEQ within sixty days. If you have any questions or require additional information, please contact me at 864-234-2282 or Ms. Ann Faitz at (501)831-5637.

Sincerely,

Veslee J. Alexander, P.G.

Project Managér

c:

Attachments: Figure 1 – Site Location Map

Figure 2 – Results for Dinoseb in Subsurface Soil at Site 3
Table 1 – Summary of Dinoseb Results in Soil Samples
Table 2 – Summary of TCLP Results in IDW Soil Sample

Appendix A – Field Investigation Forms

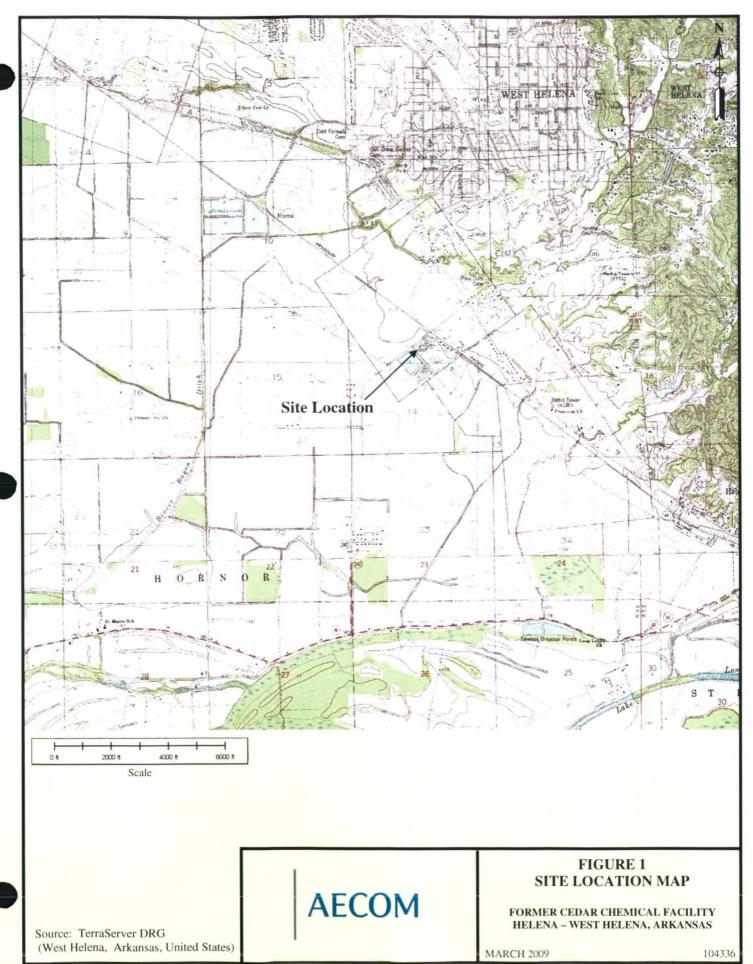
Appendix B – Analytical Laboratory Certification

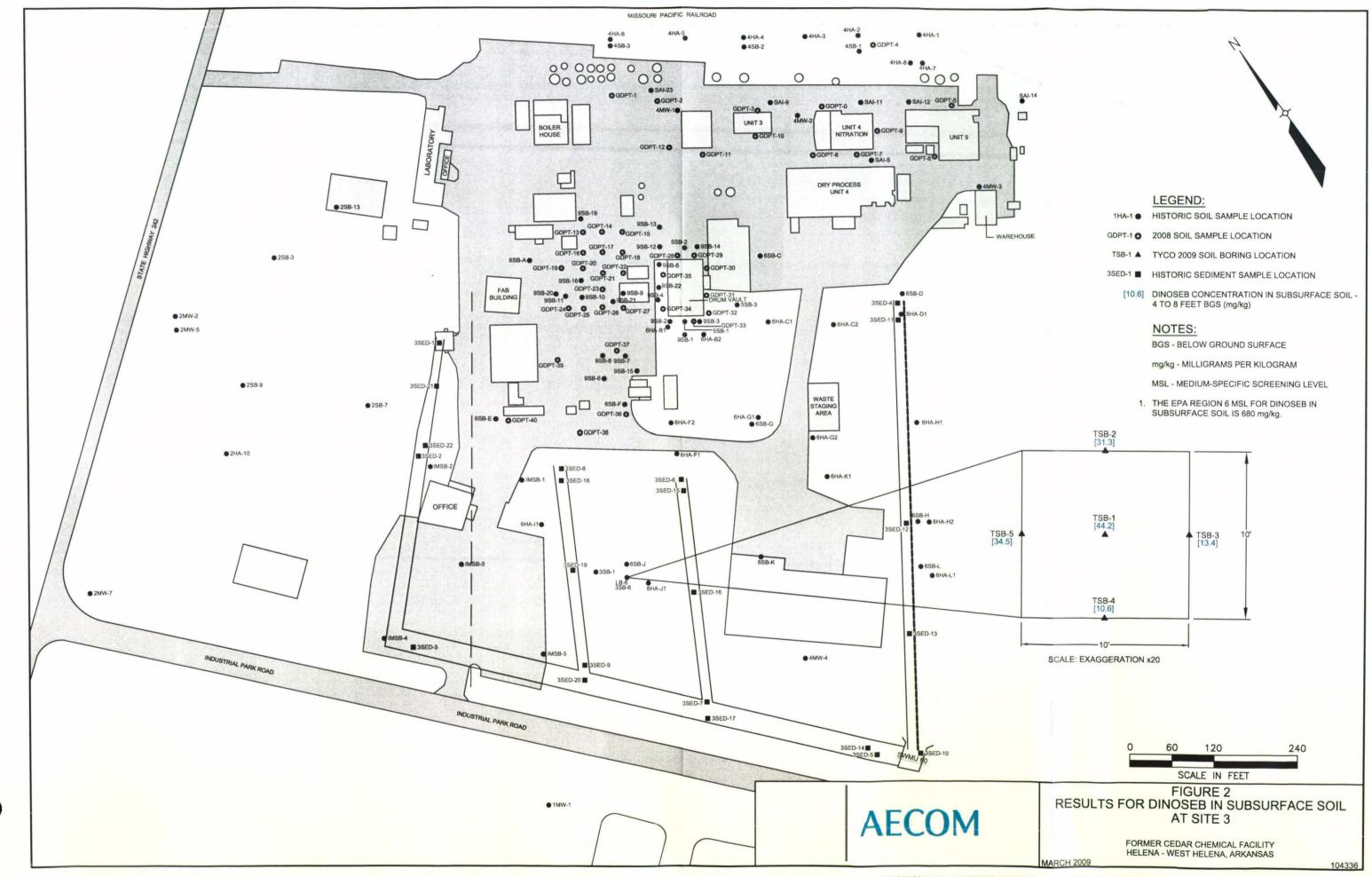
Appendix C - Data Validation Report/Certificates of Analysis

Mr. Dara Hall, ADEQ Counsel (letter only)

Mr. John Perkins, Tyco Safety Products

Ms. Ann Faitz, Tyco Counsel


Mr. Allan Gates, HCC legal counsel


Mr. Joe Ghormley, Exxon legal counsel

Project File 104366

104336:\ADMIN\Reports\Wormald SI\Wormald SI Report (Rev01).doc

FIGURES

TABLES

Summary of Dinoseb Results in Soil Samples Former Cedar Chemicals Facility Helena-West Helena, Arkansas

Sample ID	T	TSB-1	TSB-1-a	TSB-2	TSB-3	TSB-4	TSB-5
Lab Sample ID	EPA	0903061-001A	0903061-002A	0903061-003A	0903061-004A	0903061-005A	0903061-006A
Sample Depth (feet bgs)	Region 6	4 - 8	4 - 8	4 - 8	4 - 8	4 - 8	4 - 8
Date Collected	MSL	3/5/2009	3/5/2009	3/5/2009	3/5/2009	3/5/2009	3/5/2009
Herbicides by Method 81	51A (mg/k	(g)					
Dinoseb	680	44!2	12:1 # JQ	31:3	13:4 J	10.6 mg J	34:5 34: 5

Notes:

-a - Indicates a field duplicate sample.

bgs - below ground surface

EPA - Environmental Protection Agency

MSL - Medium Specific Screening Level for Subsurface Soil

Bold font and shading indicates the analyte was detected.

J - Estimated Value; Analyte below reported detection limit.

Q - RPD >40% between primary and confirmation columns.

1. The 1 - 4 foot bgs and 8 - 12 foot bgs soil samples from TSB-1 were collected, prepped, and held for analysis pending the results from the 4 - 8 foot sample. These samples were not analyzed since the 4 - 8 foot sample results were less than the EPA Region 6 MSL for dinoseb and no additional delineation was required.

Table 2
Summary of TCLP Results in IDW Soil Sample
Former Cedar Chemicals Facility
Helena-West Helena, Arkansas

Sample ID	EPA Hazardous	IDW-4
Lab Sample ID	Waste Characterization	0903061-010B
Date Collected	Threshold	3/5/2009
TCLP Volatile Organic Co		
Benzene	0.5	< 0.01
2-Butanone (MEK)	200	< 0.2
Carbon tetrachloride	0.5	< 0.01
Chlorobenzene	100	< 0.01
Chloroform	6	< 0.01
1,4-Dichlorobenzene	7.5	< 0.01
1,2-Dichloroethane	0.5	< 0.01
1,1-Dichloroethene	0.7	< 0.01
Tetrachloroethene	0.7	< 0.01
Trichloroethene	0.5	< 0.01
Vinyl chloride	0.2	< 0.01
TCLP Semivolatile Organ		0.0.
2,4-Dinitrotoluene	0.13	< 0.02
Hexachlorobenzene	0.13	< 0.02
Hexachlorobutadiene	0.5	< 0.02
Hexachloroethane	3	< 0.02
2-Methylphenol	200	< 0.02
3&4-Methylphenol	200	< 0.02
Nitrobenzene	2	< 0.02
Pentachlorophenol	100	< 0.04
Pyridine	5	< 0.04
2,4,5-Trichlorophenol	400	< 0.02
2,4,6-Trichlorophenol	2	< 0.02
TCLP Pesticides by Metho	od 8081A (mg/L)	
gamma-BHC	0.4	< 0.00004
Chlordane	0.03	< 0.00025
Endrin	0.02	< 0.00004
Heptachlor	0.008	< 0.00004
Heptachlor epoxide	0.008	< 0.00004
Methoxychlor	10	
Toxaphene	0.5	< 0.0003
TCLP Herbicides by Meth		
2,4-D	10	< 0.002
2,4,5-TP (Silvex)	1	< 0.0006
TCLP Metals by Method		
Arsenic	5	< 0.025
Barium	100	1.02
Cadmium	1	< 0.005
Chromium	5	< 0.01
Lead	5	< 0.01
Selenium	1 '	< 0.05
Silver	5	< 0.005
TCLP Mercury by Metho		
Mercury	0.2	< 0.001 -

Notos

EPA - Environmental Protection Agency

TCLP - Toxicity Characteristic Leaching Procedure

Bold font and shading indicates the analyte was detected.

Q - RPD >40% between primary and confirmation columns.

APPENDIX A FIELD INVESTIGATION FORMS

Test Boring Reports

Daily Quality Control Reports

Investigation Derived Waste Management Form

	AECC	DM.		Te	st Bo	orir	ıg Re	epo	rt	ı	BORING NO.	OF
CCIE	DJECT: ENT: NTRACTO JIPMENT:	Cedu Tyce DR: 17		mical to Tei	ting	& D1	of Ria			LC EL	CATION:	104336
GROUN	D WATER		DEPTH TO:				ASING	SAMPLE	R CORE BA			03/05/09
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	.TYPE SIZE ID					DA	TE FINISH:	03/05/09
					HAMMER WT					PR	REPARED BY	Ex Boles K.E. Quens
					HAMMER FALL							4
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLER BLOWS PER GINCHES	SAMPLE NUMBER	SAMPLE DEPTH RANGE						ION AND	REMARKS	}
	0.6			0-6.3	DK Brow	<u>ic = il</u>	ty clay	mi	<u>1</u> +			
				2,3-	Brown	ونالمح	داسي	Z 0/M	-F.~	sand,	damp	
				4.5		_					•	
					1" 970	المستم	031	B				
					1							
					SAUD, JM			Ĺ	4	~ <u>~</u>		
- 5,0				4.7-48	SANDIJA	9 241	rel, to	w F		. 27		
				4875	DEBR	مىد	s.H.f). 	sand, u	-et		
				(1							
				75-8.0	Brown	sitte	clan	orang	i è quan	within,	-, daup	
l				8.9.5	DK RA	et alim	with c	lua (, , _	د	, ,	
								7	11.1			
10.0		1		9.6-12	Light	Bro-	n che	المسة	ンス・ド	wet		
l												
					TD I	ام.5	Bas					
	ļ				'	_						
			1									
1			1									
- 15.0			1									
1		 	1									
	<u></u>										•	
1			1									
1]									
1	<u> </u>											
20.0].									
- 20 0	O (CT	DENICITY	EI 0/4/07	<u> </u>	PIETENSY	1 -	A110 Fo	- T		DIDT'O' -		NOTES
BLOW 0-4	VERY L		BLOWS/I	VERY S	SISTENCY SOFT	SS S	AMPLER ID SPLIT SPOC	N	MOSTLY:	RIPTIONS 50-100)% WD	NOTES WHILE DRILLING
5-10 11-30	LOOSE MEDIUI	W DENSE	3-4 5-8	SOFT MEDIUI	M STIFF		SHELBY TUE		SOME	30-45 ¹ 15-25 ¹		NOT ENCOUNTERED NOT READ
31-50 50+	DENSE VERY D		9-15 16-30 31+	STIFF VERY S HARD			ACRO-CO		FEW TRACE	5-10 ⁻ <5%	% NR	NO RECOVERY

	AECOM Test Boring Report								BORI PAGI	NG NO	
PRO	DJECT:	Cedi	- Che	mical							
	ENT:	1400							. PROJE	CT NO: 104	336
1	ITRACTO		£1-21		ting				LOCAT		
	JIPMENT:		<u>- 141</u>	Track-	vonyt co				ELEVA		
	ND WATER		DEPTH TO: BOTTOM OF CASING	BOTTOM OF HOLE		CASING	SAMPLER	CORE BARRE	L DATE S	ال التك (START: مركزة	<u>, 5/09</u>
DATE	HRS AFTER COMP	WATER	CASING	HOLE	TYPE		 		- DAILE	INISH: 03/0 R: Ken Bo	<u> 5169 </u>
					SIZE ID HAMMER WT	1			PREDA	RED BY: K.E.	2) es
		,			HAMMER FALL	1	•		\exists		conen!
DEPTH IN FEET	ORGANC VAPOR SCREENING (PPM)	SAMPLER BLOWS PER 6 INCHES	SAMPLE NUMBER	SAMPLE DEPTH RANGE	۵۴			SSIFICATION	AND RE	MARKS	
	0.2					sift mo					
	<u> </u>			0.2.30	BROWN	silt, dan	~P				
1							•				4
1											
				7 -		١	1.	In N			
			'	ه. ۲-ه.د	Drown	day, ye	llow M	Attes - D	ant.		
			-					,			•
- 5,0	a.e			50-5.3	RL de 3	and, Yz"	gravel				
1						eion Hic					
1		ļ		6.2-8.0	حص و ا	Slack silt	1 clus.	orange b	town !	nother, no	tz
1		_									
1					TD 8.	o' BG5					
					(= 0	(2.37		·			
		<u> </u>	}								
10.0	}						•				
1	- W- Williams										1
1		<u> </u>	١.								•
			,								
1]		1						
			•								
	 		1								. :
- 15.0			1		1						,
						*					
		 	1								•
]				+1				
			4								
		 	1		1						
			1								
- 20,0		-	-	1							•
BLOV	VS/FT.	DENSITY	BLOWS/	FT. CON	SISTENCY	SAMPLER	ID,	DESCRIPT	IONS	NOT	res
0-4	VERY		0-2	VERY S	OFT	SS SPLIT SP		MOSTLY	50-100%	WD WHILE D	
5-10 11-30 31-50 50+	DENSE	M DENSE	3-4 5-8 9-15 16-30	SOFT MEDIUI STIFF VERY S	M STIFF STIFF	ST SHELBY G GRAB SA MC MACRO-0	MPLE CORE	SOME LITTLE FEW TRACE	30-45% 15-25% 5-10% <5%	NE NOT END UR NOT REA NR NO RECO	

	AECO)M		Te	est Bo	ring R	epo	rt	BORI PAGI	NG NO. 758-3
PRO	JECT:	Cedu	on Che	mical			ı,			
CLIE	ENT:	1400							PROJE	CT NO: 104336
CON	NTRACTO		72-17	t. Te	dias				LOCAT	
EQL	JIPMENT:	5	- T4 F		mountre	DOT RI	4		ELEVA	TION:
GROUN	ND WATER	NΑ	DEPTH TO:			CASING	SAMPLE	R CORE BARR	EL DATE S	START: 03/65/09
DATE .	HRS AFTER COMP	WATER	BOTTOM OF . CASING	BOTTOM OF	TYPE					INISH: 03/05/09
					SIZE ID				DRILLE	
					HAMMER WT				PREPA	RED BY: K.E. Quens
					HAMMER FALL					
DEPTH	ORGANIC VAPOR	SAMPLER BLOWS	SAMPLE	SAMPLE						
IN FEET	SCREENING	PER	NUMBER	DEPTH RANGE		FIE	LD CLA	SSIFICATIO	N AND RE	MARKS
	(PPM)	6 INCHES		0-0.3	DK Resour	ر عذاله اطمي				
1	ف،۲		1	0-2.5	F1. 10 000	, , , , acom	-			
1		-	1	0.3-	Brown:	it, trace	داء.	dass		
]:	7.0		, ,	ر ک	المصط		
	<u> </u>		1				-			
		 			1					
ļ ·			1	1						
1			1	İ		.*				
1	1.0		1							
- 5.0			1	l						
1]				-			
]	Ì						
		<u> </u>	1			51/4	, moi	42		
1		ļ	4	17-7.5	Black to	Chan em			0 . 1	
1		1	-	7.5-8.	Brown:	siles day	SOM	V.f. m. sa	rd, Meist	
ĺ		 	1	1	TD 8.0	y Bas				
		1			'					
- 10,0	ł		1							
10,0]							
1]	1						
1	1		4	1						
	<u></u>		4	1	1					
	1		1		ł					
	 	 	1		1					•
		1	1							
]	1						
15.0]	1						
10.0			1							
1		<u> </u>	4							
1	1		-							
		 	1							
1		1	1	1						
1]							
1]							
- 20,0			4	1						•
	I	DENIOUTY	I DI GIAIG	<u> </u>	ICICTENCY 1	CALIFICA		NEC. 20.	TIONS	LIOTEA
BLOW 0-4	/S/FT. VERY I	DENSITY OOSE	BLOWS/	VERY	SOFT	SAMPLER SS SPLIT SP		DESCRIP MOSTLY	50-100%	NOTES WD WHILE DRILLING
5-10	LOOSE		3-4	SOFT		ST SHELBY	TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30		M DENSE	5-8		IM STIFF	G GRAB SA		LITTLE	15-25%	UR NOT READ
31-50 50+	DENSE VERY I	: DENSE	9-15 16-30	STIFF VERY	STIFF	MC MACRO-C	UKE	FEW TRACE	5-10% <5%	NR NO RECOVERY
	, I		31+	HARD				.,,,,,,		

is."	AECO)M		Te	est Bo	oring F	Repor	t	BORII PAGE	NG NO,	15B-4	-
	DJEÇT:	Ceda	- Che	سندما								- :
CLIE		1400	<u> </u>		1.				PROJE	-	104336	_
	NTRACTO		F - 74	to le		& DET R			LOCATI	-		- .
	JIPMENT:		DEPTH TO:	track-	wonztr	& DPT K	SAMPLER	CODE DADDE	ELEVA		03/05/09	-
DATE	HRS AFTER COMP	WATER .	BOTTOM OF CASING	BOTTOM OF	TYPE	CASING	SAMPLER	CORE BARREL			03/05/09	
DAIL	COMP	Y	CASING	HOLE	SIZEID		<u> </u>				en Boles	-
					HAMMER WT		1				K.E. Quens	-
					HAMMER FALL				1			-
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLER BLOWS PER 6 INCHES	SAMPLE NUMBER	SAMPLE DEPTH RANGE			•	SIFICATION	AND RE	MARKS	1	
	rs ia			U10.3	0-0-3	DK BROWN	SILTY CL	-44				
	0.4		:	0.3~	Brown	silty cla	かんも	m sand,	dano			
				5.~		-	_	•	•			
1												
1			;									
i	1				ľ							
								•				
- 5.0	<u> </u>											
1				5.5-6.0	Brown	emaraj	5.14,-c	lag mois	<u> </u>	-		
				6-615	GRAYT	O BLACK	SILT "					
1	0.2				Brown	ritty cla	- Mois	<i>. f</i>				
1 .						1 7	7					
					TNS	5.0' Bas			`			
				1	' '	حمد کی						
- 10,0] .									
10,0										•.	-	
	-	 				. *						
1			Ì									
				<u> </u> '								
		1	ł									
			1									
]												
15.0		 										
	L											
	1	<u></u>	1	1								
1	 		1	1								
	<u> </u>									٠		
			1				,					
			1	1								
- 20,0]									
BLOW	IS/ET	DENSITY	BLOW\$/	FT CON	ISISTENCY	SAMPLE		DESCRIPTION	פואר		NOTES	-
0-4	VERY L	OOSE	0-2	VĒRY		SS SPLITSP	1 ИОО	MOSTLY 5	0-100%		WHILE DRILLING	
5-10 11-30 31-50 50+		M DENSE	3-4 5-8 9-15 16-30	SOFT MEDIU STIFF VERY		ST SHELBY G GRAB SA MC MACRO-	AMPLE L		30-45% 15-25% 5-10% <5%	UR I	NOT ENCOUNTERED NOT READ NO RECOVERY	

AECOM Test Boring Report								BOR PAG	ING NO	TSB-5			
	DJECT:	Cedu	nt Chi	mical									
CLIE	INT:	1400			-			2.5	•		PROJE	ECT NO	104336
CON	TRACTO		1F:-54		dia				1		LOCAT		
EQU	JIPMENT:	: <u> </u>	TOT-		mounte	4	DET RI	<u>د</u>			ELEVA		
GROUN	ND WATER		DEPTH TO:	:			CASING .	SAMPLE	ER CC	ORE BARRE	DATE:	START:	03/65/09
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE				Y .		DATE	FINISH:	03/05/09
					SIZE ID								Ken Boles
					HAMMER WT								Y: K.E. Quens
					HAMMER FALL								
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLER BLOWS PER 6 INCHES	SAMPLE NUMBER	SAMPLE DEPTH RANGE							AND RE	MARK	S
				0.01	0-10.5	DK	BROWN	SILT	Y CLA	14			
	1,0	 		0.5-	0.5-4.	Br.	WN 310	ام دله	14. V.	FINE	saus, 1	Jawe L	• !
	i 1		1	7.0	e e				1	•			
	 			1									
	i'		1		l'								
	<u> </u>		4		1								
	1.2	 			[
- 5.0	1.6		1										
<u> </u>	1		1]			٠					
					1								
•				 									
1	Ť	ļ	4	7,0-7,5	7.0-7.5	<u>- R</u> -	000×510	y cla	1-1/1	1 6,00	1		
		 	 	7.5-8.0	-			LOWY	Clay	+4 5.1	t - Moil	<u></u>	
			t .		775-8	`O.	Bas			*			
			,						•				
10.0			ļ					٠					
		<u> </u>	.				٠.						
	-		1					•					
1		<u> </u>	1										
1 1													1
l .			1				i i		*				
		<u> </u>	4			•	*						
•			4 *										* * * * * * * * * * * * * * * * * * *
			1		·								
- 15,0		<u> </u>	1							•			
	1 .		1 .										
1			1	1							·		
1]										
]	l		4										
]			1									•	
]	1	1	1										
			1										
20.0]										
4		<u> </u>	<u> </u>	1	<u> </u>	,							•
BLOWS 0-4	S/FT. C	DENSITY	BLOWS/F 0-2	FT. CON: VERY S	SISTENCY	SS	SAMPLER SPLIT SPC		D MOSTL	ESCRIPTI			NOTES
0-4 5-10	LOOSE		3-4	SOFT		ST	SHELBY TI		SOME		50-100% 30-45%	WD NE	WHILE DRILLING NOT ENCOUNTERED
11-30 31-50	MEDIUN	M DENSE	5-8 9-15	MEDIUM STIFF	M STIFF	G	GRAB SAN MACRO-CO		LITTLE FEW	:	15-25% 5-10%	UR	NOT READ NO RECOVERY
50+	VERY D		16-30 31+	VERY S	STIFF	INIC	WIACKO-CO	JRL	TRACE		5-10% <5%	NR	NORECOVERY

DAILY QUALITY CONTROL REPORT

JOB NUMBER 104336 DATE 03/04/09 REPORT NUMBER TEMPERATURE RANGE WEATHER SURVEY EARTH TECH PERSONNEL ON SITE CITY & Quens SUMMARY OF SITE ACTIVITIES Possided escort to util! LEVEL OF HEALTH & SAFETY PROTECTION INSTRUMENTATION USED ____ NA CALIBRATION(S) PERFORMED LA INSTRUMENT PROBLEMS/REMEDIES WA SAMPLES COLLECTED* _ \(\mathcal{D} \sqrt{\beta} \) SAMPLE COLLECTION METHOD(S) $_{-}$ \mathcal{N} /A . QUALITY CONTROL SAMPLES. NA ADDITIONAL REMARKS CIRCY GREENWay of ADEQ Also on site SIGNATURE: * INDICATE SAMPLE MEDIA: SOIL OR QA/QC.

DAILY QUALITY CONTROL REPORT

AECOM

JOB NUMBER 164336 DATE 03/05/09 REPORT NUMBER
PROJECT & LOCATION Chedra Chemical Facility, Helena, AR
WEATHER Mothy Jan TEMPERATURE RANGE 60-72 WIND 5-15
EARTH TECH PERSONNEL ON SITE LE CLUCY TIME ON SITE 5 hu
SUMMARY OF SITE ACTIVITIES COMPLETED 5 Soil WIENER
LEVEL OF HEALTH & SAFETY PROTECTION P
INSTRUMENTATION USED PID LEL
CALIBRATION(S) PERFORMED
INSTRUMENT PROBLEMS/REMEDIES D/A
SAMPLES COLLECTED: Soil TEB-1 TSB-2 TTB-3 TTB-4 TSB-5 (All @ 4-8' BGS) Soil TSB-1 (1-4) TSB-1 (8-12) Hold for analysis Soil 1861-1
SAMPLE COLLECTION METHOD(S) DT-GDJB
QUALITY CONTROL SAMPLES: Soil TJB-IA, TJB-MS, TJB-MSD
Additional REMARKS Cindy Cheonway (ADEC) Movided encopt Geomotrix an-Site to observe is collect split-samples (Adam Taylor, Kelly Beck)
*INDICATE SAMPLE MEDIA: SOIL OR QA/QC.

IDW MANAGEMENT FORM

Page 1 of \

COMPANY_	Tyco				_ PROJE	ECT Womald Site Investigation
SITE NAME	Former Cede	ar Chemi	cals Fac	cility	LOCA	TION Helena-West Helena, Arkansas
CONTAINER NUMBER	MEDIA DESCRIPTION	MEDIA ORIGIN	DATE FILLED	DATE SAMPLED	DATE DISPOSED	COMMENTS
1	soil from borings	subsurface Soil	3/5/09	3/5/09		soil from borings TSB-1 through TSB-5
					,	
			*		·	
			-			
		annian protessi i i i i i i i i i i i i i i i i i i				
<u> </u>	_		l			
•						
<u> </u>						
	·					
			<u> </u>			,
·		-			,	Data/Graphics/Tyudall/202661/idu/105.0

APPENDIX B
ANALYTICAL LABORATORY CERTIFCATION

State of Arkansas Department of Environmental Quality Laboratory Certification Program

Environmental Testing & Consulting

Memphis, TN

has earned certification by law in accordance with Code Annotated §8-2-201 et seq., the State Environmental Laboratory Certification Program Act for the following parameters:

Alkalinity	pН	Beryllium	Potassium	ТРН
Ammonia	Phenol	Boron	Selenium	Acute Toxicity
BOD	Sulfate	Cadmium	Silver	Chronic Toxicity
CBOD	Surfactants	Calcium ·	Sodium	Herbicides
Chloride	TDS	Chromium	Strontium	Pesticides & PCBs
Chlorine	TKN	Cobalt	Thallium	Semi-volatiles
COD	TOC -	Copper	Tin	Volatile Organics
Conductivity	Total Phosphorus	Hex. Chromium	Titanium	
Cyanide	Total Solids	Iron	Vanadium	
Fluoride	TSS	Lead	Zinc	•
Hardness	Turbidity	Magnesium	Fecal Coliform	
Nitrate	Aluminum	Manganese	DRO	
Nitrite	Antimony	Mercury	Explosives	
Oil & Grease	Arsenic	Molybdenum	GRO	
Orthophosphate	Barium	Nickel	TOX	

Laboratory ID: 88-0650 Certificate Number: 09-010-0

Issued Date: 7 February 2009 Expired Date: 7 February 2010

ADEQ Director

APPENDIX C
DATA VALIDATION REPORT/CERTIFICATES OF ANALYSIS

DATA VALIDATION REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) Field Sampling Check is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and ID, cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) Data Verification is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) Data Review is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and compliance with the requirements of each analytical method. Two major components of data

validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

Earth Tech performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, July 2004), USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, October 1999), and Data Validation Standard Operating Procedures for Contract Laboratory Program Routine Analytical Services (USEPA, July 1999). In addition, method-specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste (SW-846), Update III (USEPA, June 1997) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data (5 soil samples – TSB-1, TSB-2, TSB-3, TSB-4, and TSB-5 and 1 waste sample – IDW-4) plus QA/QC data (1 field duplicate sample – TSB-1-a, 1 matrix spike sample – TSB-1-ms/ matrix spike duplicate sample – TSB-1-msd, and 1 rinsate blank sample – TSB-1-d) were collected on March 5, 2009 for the Former Cedar Chemicals Facility. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash "/" and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by Earth Tech based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by Earth Tech to inform the data user of any specific QA/QC problems that were encountered.

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Dinoseb by Method 8151A

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

TCLP Volatile Organic Compounds by Method 8260B

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

TCLP Semivolatile Organic Compounds by Method 8270C

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

TCLP Pesticides by Method 8081A

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

TCLP Herbicides by Method 8151A

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

TCLP Metals by Methods 6010B/7470A

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

None of the QC excursions encountered during the validation of this data set resulted in any of the data being rejected. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

- United States Environmental Protection Agency (USEPA), June 1997. Test Methods for Evaluating Solid Waste (SW-846), 3rd Edition, Update III.
- United States Environmental Protection Agency (USEPA), July 1999. Data Validation Standard Operating Procedures for Contract Laboratory Program Routine Analytical Services, Revision 2.1, EPA Region IV.
- United States Environmental Protection Agency (USEPA), October 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. Publication #EPA540/R-99/008.
- United States Environmental Protection Agency (USEPA), July 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. Publication #EPA540/R-04/004.

2796 Whiteen Rose

Mersphis, Tonnossoo 38133

Q1) 213-2400

Fax (901) 213-2440

March 25, 2009

Ms. Doria Cullom
AECOM EARTH TECH
10 Patewood Drive
Building VI, Suite 500
Greenville, SC 29615

Ref:

Analytical Testing

Lab Order Number

0903061

Project Description

Cedar Chemicals

Site

W. Helena, AR

Project Number

104336

Environmental Testing and Consulting, Inc. received 8 sample(s) on 3/5/2009 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in our laboratory in accordance with Standard Methods, The Solid Waste Manual SW-846, EPA Methods for Chemical Analysis of Water and Wastes and /or 40 CFR part 136. Results are reported wet weight unless otherwise indicated.

The EPA requires that water samples analyzed for pH, dissolved oxygen and total residual chlorine be analyzed in the field. Analyses and results reported which do not indicate "Field" for these parameters were analyzed outside the holding time as specified in Table II of 40 CFR Part 136.3.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, instrumentation maintenance and calibration were performed in accordance with guidelines established by the USEPA and NELAP.

The results are shown on the attached analysis sheet(s).

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Nathan Pera IV

Laboratory Project Manager

Attachment

AECOM_GREENVILLE

Certifications

Alabama #40750 Louisiana #04015 Florida #E87943 California #05240CA
Arkansas #88-0650 Mississippi Pennsylvania #68-3195 Texas #T104704180-05-TX

Arkansas #88-0650 Mississippi Pennsylvania #68-3195 Texa Illinois #200015 Oklahoma #9311 USDA #S-46279

Kentucky #90047 Tennessee #02027 EPA #TN00012 Kentucky UST #41 Virginia #00106 NELAP #100456

2790 Whitten Road

Memphis, Tennessee 38133

(901) 213-2400

fax (901) 213-2440

A Laboratory Management Partner

Login

Chain-of-Custody

2790 Whiteen Road

Warachis, Tennessee 38133

Fax (001) 213-2440

Analytical Summary / Cross Reference Table

CLIENT

AECOM EARTH TECH

ETC Order Number 0903061

Date Received

Project C

Cedar Chemicals

03/05/09

Site

W. HELENA, AR

ETC Sample ID	Field ID Sample ID		Date/Time Sampled	e Matrix	Method	Method Description
0903061-001A	TSB-1		03/05/09 10:10	Soil	8151A	Herbicides
			•			Dinoseb
0903061-002A	TSB-1a			Soil	8151A	Herbicides
					·	Dinoseb
0903061-003A	TSB-2		03/05/09 9:38	Soil	8151A	Herbicides
						Dinoseb
0903061-004A	TSB-3		03/05/09 9:50	Soil	8151A	Herbicides
0903061-005A	TCD 4		03/05/09 9:25	Soil	8151A	Dinoseb Herbicides
0903001-003A	130-4	4	03/03/09 9.23	2011	0131A	Dinoseb
0903061-006A	TSB-5		03/05/09 9:10	Soil	8151A	Herbicides
						Dinoseb
0903061-007A	TSB-1 1-4		03/05/09 10:00	Soil	8151A	Herbicides
						Dinoseb
0903061-008A	TSB-1 8-12		03/05/09 10:15	Soil	8151A	Herbicides
	e Exp					Dinoseb
0903061-009A	TSB-1D		03/05/09 11:00 A	queous	8151A	Herbicides
						Dinoseb
0903061-010A	IDW-4		03/05/09 10:30	Soil		ICP Metals
				g - : 1	7470 4	TCLP (8) RCRA Metal:
			•	Soil	7470A	Mercury TCLP RCRA Hg
				Soil	8081A	Pesticides
	· .			0011	000111	TCLP Pest
*	•			Soil	8151A	Herbicides
						TCLP Herb
	•			Soil	8270C	GCMS Semi-Volatiles
			•			TCLP SVOC
				Soil	1311	1311 TCLP Characterization
						Full TCLF
0903061-010B				Soil	8260B	GCMS Volatiles
						TCLP VOC

(VDTSR) Date Received:

Received by:

03/05/09 14:20

Rebekah Ross

Environmental Testing & Consulting, Inc. 2790 Whitten Road Mercphis, Tannesses 28:33 (901) 213-2400 Fax (901) 213-2440

"A Laboratory Management Partner"

Cooler Receipt Form

Client Name	AECOM EARTH TECH		
Order Number	·: <u>0903061</u>	Reserved for Barcode	
Project ID:	Cedar Chemicals		
Carrier name:	Client Delivery		
Carrier Bill No	u:		
Shipping conta	ainer/cooler uncompromised?	● Yes ○ No	O Not Present
Custody seals	intact on shipping container/cooler?	O Yes O No	Not Required
Custody seals	intact on sample bottles?	○ Yes ○ No	Not Required
Chain of custo	ody present?		
Other docu	imentation present?	O Yes No	
Special pre	ecautions or instructions	O Yes No	
included? Chain of custo	ody agrees with sample labels?	⊙ Yes O No	
Samples in pr	oper container/bottle?		
Sample contain	iners intact?	• Yes O No	
Containers in	separate bags?	O Yes 💿 No	
Sufficient sam	ple volume for indicated test?		
All samples re	ceived within holding time?		
Lab able to an	alyze samples within holding		
time? Cooler temper	rature in compliance?		
	vials have zero headspace?	O Yes O No	No VOA vials submitte
	rvation acceptable upon receipt?		٨
Samples scree	ened for radioactivity?	○ Yes ○ No	● Not Checked
Person Contac	cted:	Date Contacted:	
Comment:			
Resolution:			
Non-complian	ce issues will be recorded on a non-con	npliance report.	

Environmental Testing & Consulting, Inc. 2790 Whitten Road Memphis, TN 38133 (901) 213-2400 Fax (901)213-2440 clientservices@etcmemphis.com

CHAIN OF		
ETC Work Order	11/10/2	$\overline{\wedge}7.1$

ETC Work Order, ETC Quote No.

	ODI		
	クス	$\overline{\cap}$	
	$U \cap$		
7		O C	•

Company N		•	Phone # 8	54.23.4	8939	RUSH ²		Analysis Rec	uested	Which Regs Apply?
AEC	M Technical Som	CLA	PO#			Ice	(Note specia	I detection lim	its / methods)	NPDES
Project/Site	(Include State)		FID#							Wastewater
Ccon-C	Limitals, Willelman	AR	E-Mail							RCRA
Type of Ev	ent ¹ : Single Daily Wee	kly Monthly	Quarterly	Semi-Ann	ual Ann	ual	8(2)			UST
Project#	rent ¹ : Single Daily Wee		Matrix							Risk Based Limits
	04336		1 Wastewate	∍r	4 Sludge	1				TRRP 13
	nager/Contact		2 Aqueous		5 Oil/Solv	ent	qaxav			LA RECAP
L. Alex		1	3 Soil/Sedim		6 Other		ž			USACE
# of Cont.	Sample ID/ Number	Depth	Sample Date	Sample Time	Matrix	Type Grab/Comp				Comments
	TSB-1 Cylin	4-8	03/05/0	1	3	Grab	Y			·
1 -	T5B-1a	4-8	1	1000	1	ì	3			
10	TSB-IMS	4-8		1000			*			
age	TERYMSD	y~8		1000			*			
50	TS8-7	4-8		0938			8			
) f 6	T58-3	4-8		0950			*			
1	T58-4	4-8		CA25			X			
1	T58-5	4-8		0910			8			
	T58-1	1-4		1000			8			HOLD
	TZ B-1	8-12	V	1015	V	V	×			Has
2	TIB-1D		03/05/18	1100		GE18	\succ			
Sampled B		Method of Ship	ment	Blank/Ço	oler Temp	Remarks				
Keith	EOwar	Dep-all			Ψ					
RELINOUIS	SHED BY (sign)	4 / 1	DATE	TIME	RECEIVE	DBY (sign)		DATE 4.5.15	1	itine Sampling Events Only charges may apply
RELINOUIS	HED BY (sign)		DATE	TIME	BECEIVE	D BY (sign)		DATE	TIME	cuaiges may apply
251 800	$\Delta M = \Delta M $		1.5.09	<u> </u>		\				* *
RELONQUIS	HED BY (sign)		DATE	TIME	FSPE	D BY LAB (pri	t/sign)	200	TINE4-20	
Places						-				

Please return ETC Sample Kit Request Form with chain of custody.

Distribution: Original accompanies samples to the laboratory.

Page ____ of ____

Environmental Testing & Consulting, Inc. 2790 Whitten Road Memphis, TN 38133 (901) 213-2400 Fax (901)213-2440 clientservices@etcmemphis.com

CHAIN	N OF	CUSTO	DY F	ECOF	₹Ŋ
CHALL	1 OI	CUSIO	$\boldsymbol{\nu}$	TO COL	v

ETC Work Order O90306 ETC Quote No.

					- ()0	nuou²					4 .		1.077	sh Cara Araba
Company Na	ame		Phone # 🔀 (4-28	84.57					alysis Req			Whi	ch Regs Apply?
	u Technical Sep	MCES	PO #			ice		(Note s	pecial det	ection limi	ts / metho	ods)	-	NPDES
Project/Site	(Include State)	_	FID#			<u> </u>			1 1			1	L	Wastewater
Colon	Therical, W. Helen,	Ark	E-Mail					101	1 1			 		RCRA
	ent ¹ : Single Daily Weel		Quarterly S	Semi-Ann	uai Ann	ual	_ }	1		1 1	1	}	<u> </u>	UST
Project #			Matrix					14] [ļ	† [Risk Based Limits
			1 Wastewater	г	4 Sludge	3		1 ' 1	1 1		į	1		TRRP 13
Project Man	ager/Contact		2 Aqueous		5 Oil/Solv	ent	Į.		1 1		- 1			LA RECAP
			3 Soil/Sedime	ent	6 Other		İ	88 F.	1 1	 	Į	1 1		USACE
# of	Sample	ļ	Sample	Sample		Туре	İ	199	1 1	1	i	1 1	İ	_
Cont.	ID/ Number	Depth	Date	Time	Matrix	Grab/Comp		. 1				-	_	Comments
5	1DW-4		03/05/04	1030	3	Cera	1	X				1		
			75.75			1 1							1	
											 	 		
ا ت								1 1	1 1	1 1		1. 1		
age														
		<u> </u>	 			 -				 		╂—╁┈	+-	
6 <u>of</u>							1		1 1		. 1	1		_
of o									1					
<u> </u>		<u></u>							\dashv			+		
l l										1		1 1		
												1 1	_	
		 		ļ		 			-			+ +		
]		ļ	}										i	
								77						
 		 	 			ļ		+++			 - -	-├		
		<u> </u>			,			_						
Sempled By		Method of Ship	ρφent	Blank/Co	oler Temp	Remarks				-				
$V \cdot h$	Eaven	Marcel)	1	WC.									
REVINCLUS	HED BY (sign)	1 map-al	DATE	TIME	PECEME	D RV (eign)				DATE	TIME	1 - Po-	tine S	ampling Events Only
Y.U.Y	HED BY (sign)		03/2/09	330		D BY (sign)			3	5.19		2 . Sur	charge	s may apply
RELINGUIS	HEDDBY (sign)		DATE	TIME	RECEIVE	DBY (sign)				DATE	TIME	4- 501	or ion Ac	4 may abbit
	HEIDBY (sign)		8.5 09	"""	INCOLIVE	(פוקוו) וטט.				DAIL	'''''			
	HED BY (sign)		DATE	TIME	RECEIVE	OBY LAB (P	rint/sign			DATH	TIME /	7		
1	ar (sign)		150,10					,	(2)	12314	ħ-"T\L	30		
											<u> </u>			

Please return ETC Sample Kit Request Form with chain of custody.

Distribution: Original accompanies samples to the laboratory.

Page ____ of ____

2790 Whitten Road

Memphis, Tennessee 38133

(901) 213-2400

fay (901) 213-2440

A Laboratory Management Partner

Sample Reports

790 Whitten Rand Memphis,

Memphis, Tannessee 38133

Fax (901) 213-2440

CLIENT:

AECOM EARTH TECH

CASE NARRATIVE

Project:

Cedar Chemicals

Date: 03/26/09

Lab Order Number:

ETCAL

Herbicides by Method 8151A

Sample Analysis

Samples were initially analyzed without dilution. The levels of Dinoseb present indicated that a dilution factor of 1:1000 would be required. Both the un-diluted and diluted sample extracts were analyzed in the same analytical batch. The high levels of Dinoseb caused an elevated result for this target analyte in the ending calibration verification standard for the confirmation column.

Data presented consists of preliminary results. All dilutions will be re-analyzed to ensure data within the calibration range. Some sample results are flagged with the data qualifier J, to indicate results between the MDL and MQL. These samples will be analyzed at a lesser dilution factor.

Method Blank

Dinoseb was detected in the method blank at a concentration of 6.90 J ug/kg. This concentration had no impact on the final sample data and will be re-analyzed to confirm this result.

Matrix Spike/Matrix Spike Duplicate

The MS/MSD could not be properly evaluated due to the high level of Dinoseb in the parent sample relative to the spike amount.

Pesticides by Method 8081A

Confirmation Analyses

The following compounds were detected in both the primary and confirmatory analyses, with a relative percent difference of greater than 40%. In all cases the higher of the two detected values were used for reporting purposes.

Methoxychlor 80% RPD

Project No. 104336

2790 Vinnen Road

Site

AECOM EARTH TECH

10 Patewood Drive Building VI, Suite 500 Project **Cedar Chemicals** Description

W. Helena, AR

Greenville, SC 29615

Lab Order Number 0903061.

Lab ID

0903061-001A

Field ID

TSB-1

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 10:10

Analytical Method

Prep Method	8151A	Prep Batch(s)	23743				Date/Time Prep	ped	03/09/09 15:03
Compound		Result	Units		MQL	DF	Date/Time Analyzed	Ву	Analytical Batch
Dinoseb		44,200	μg/Kg		15,000	1,000	03/19/09 8:57	DPC	38386
Surrogate:	DCAA		70 %	Limits:	20-150	1	03/19/09 4:28	DPC	38386

Qualifiers/		Surrogate Recovery outside accepted limits	* 1	Recoveries affected by interferences or high background
Definitions	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	E	Value exceeds method calibration range	·H	Prepped / Analyzed out of holding time.
	J	Estimated Value Analyte below reported detection limit	M	Minimum value
	MDL	Method Dection Limit (unadjusted)	MQL	Method Quantitation Limit (adjusted)
1	MRL	Method Reporting Limit	N	Refer to attached Non-Compliance Report
,	Q	RPD >40% between primary and confirmation columns	. SQL	Sample Quantitation Limit (adjusted MDL)

Memphis, Transpared 38133 "A Laboratory Management Partner"

(901) 213-2460

Site

AECOM EARTH TECH

Project

Cedar Chemicals

W. Helena, AR

10 Patewood Drive Building VI, Suite 500 Greenville, SC 29615 Description

Project No. 104336

Lab Order Number 0903061

Lab ID

0903061-002A

Field ID

TSB-1a

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 10:10

Analytical Method 8151A

Prep Method	8151A	Prep Batch(s)	23743	 		Date/Time Prep	ped	03/09/09 15:03
Compound		Result	Units	 MQL	DF	Date/Time Analyzed	Ву	Analytical Batch
Dinoseb Surrogate:	DCAA	33,800	μg/Kg 65 %	15,000 20-150	1,000	03/23/09 15:52 03/19/09 5:35	DPC DPC	

Qualifiers/	/	*	Surrogate Recovery outside accepted limits	* I	Recoveries affected by interferences or high background
Definitions	s	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
		Ė	Value exceeds method calibration range	Н	Prepped / Analyzed out of holding time.
		J	Estimated Value Analyte below reported detection limit	M	Minimum value
		$M\!D\!L$	Method Dection Limit (unadjusted)	MQL	Method Quantitation Limit (adjusted)
		MRL	Method Reporting Limit	N	Refer to attached Non-Compliance Report
		Q	RPD >40% between primary and confirmation columns	SQL	Sample Quantitation Limit (adjusted MDL)
03/25/09	5087	AECO	M_GREENVILLE		

Environmental Testing

AECOM EARTH TECH

Project

Cedar Chemicals

W. Helena, AR Site

10 Patewood Drive Building VI, Suite 500 Greenville, SC 29615 Description

Project No. 104336

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 9:38

Lab ID 0903061-003A Field ID TSB-2

Lab Order Number 0903061

Analytical Mathad

03/25/09

5087 AECOM GREENVILLE

Prep Method	8151A	Prep Batch(s)	23743	•			Date/Time Prep	ped	03/09/09 15:03
Compound	*	Result	Units	* 10	MQL	DF	Date/Time Analyzed	Ву	Analytical Batch
Dinoseb Surrogate	e: DCAA	31,300	μg/ K g 79 %	Limits	15,000 20-150	1,000 1	03/19/09 9:51 03/19/09 5:58	DPC	38386 38386

Surrogate Recovery outside accepted limits Recoveries affected by interferences or high background Qualifiers/ Definitions В Analyte detected in the associated Method Blank DF **Dilution Factor** Value exceeds method calibration range Ε Prepped / Analyzed out of holding time. Estimated Value Analyte below reported detection limit Minimum value MDL Method Dection Limit (unadjusted) MQL Method Quantitation Limit (adjusted) MRL Method Reporting Limit Refer to attached Non-Compliance Report RPD >40% between primary and confirmation columns Sample Quantitation Limit (adjusted MDL)

Memphis, Tennessee 18433

(901) 213-2400

AECOMEARTH TECH

Project

Cedar Chemicals

Site W. Helena, AR

10 Patewood Drive Building VI, Suite 500 Greenville, SC 29615 Description

Project No. 104336

Lab Order Number 0903061

Lab ID

0903061-004A

Field ID

TSB-3

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 9:50

Analytical Method 8151A

Prep Method 8151A	Prep Batch(s)	23743				Date/Time Prep	ped	03/09/09 15:03	
Compound	Result	Units		MQL	DF	Date/Time Analyzed	Ву	Analytical Batch	
Dinoseb Surrogate: DCAA	80,400	μg/Kg 87 %	l imite:	15,000 20-150	1,000	03/23/09 16:15 03/19/09 6:20	DPC DPC		

Qualifiers/	*	Surrogate Recovery outside accepted limits	* I	Recoveries affected by interferences or high background
Definitions		Analyte detected in the associated Method Blank	DF	Dilution Factor
	Ė	Value exceeds method calibration range	Н	Prepped / Analyzed out of holding time.
	J	Estimated Value Analyte below reported detection limit	M	Minimum value
	MDL	Method Dection Limit (unadjusted)	MQL	Method Quantitation Limit (adjusted)
	MRL	Method Reporting Limit	N	Refer to attached Non-Compliance Report
	Q	RPD >40% between primary and confirmation columns	SQL	Sample Quantitation Limit (adjusted MDL)
03/25/09	5087 AECC	M_GREENVILLE		

Memoris, Tennossee 38133

(901) 213-2400

AECOM EARTH TECH

Project

Cedar Chemicals

Site W. Helena, AR

10 Patewood Drive **Building VI, Suite 500** Greenville, SC 29615 Description

Project No. 104336

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 9:25

Lab Order Number 0903061

Lab ID

0903061-005A

Field ID

TSB-4

Analytical Method 8151A										
Prep Method	8151A		Prep Batch(s)	23743				Date/Time Preppe	∍d	03/09/09 15:03
•								Date/Time		Analytical
Compound			Result	Units		MQL	DF	Analyzed	Ву	Batch
Dinoseb			70 700			45.000	4 000	00/00/00 40:00	DD0	20200
Dinoseb			70,700	μg/Kg		15,000	1,000	03/23/09 16:38	DPC	38386
Surrogate:	DCA	4		. 79 %	Limits:	20-150	1	03/19/09 6:43	DPC	38386

Qualifiers/ Definitions Surrogate Recovery outside accepted limits

Analyte detected in the associated Method Blank

Value exceeds method calibration range E

J Estimated Value Analyte below reported detection limit

MDL Method Dection Limit (unadjusted)

MRL Method Reporting Limit

RPD >40% between primary and confirmation columns

Recoveries affected by interferences or high background

Dilution Factor

Prepped / Analyzed out of holding time.

Minimum value

MQL Method Quantitation Limit (adjusted)

Refer to attached Non-Compliance Report Ν

SQL Sample Quantitation Limit (adjusted MDL)

Memphis, Tennessee 38133

Site

AECOM EARTH TECH

Project

Cedar Chemicals

10 Patewood Drive Building VI, Suite 500 Description

W. Helena, AR

Greenville, SC 29615

Project No. 104336

Lab Order Number 0903061

Report of Analysis

Lab ID

0903061-006A

Received 03/05/09

Field ID

TSB-5

03/25/09 5087 AECOM_GREENVILLE

Matrix Soil

Sampled 03/05/09 9:10

Analytical M	ethod 8151	A							
Prep Method	8151A	Prep Batch(s) 2	23743			-	Date/Time Prepp	ed	03/09/09 15:03
							Date/Time		Analytical
Compound		Result	Units		MQL	DF	Analyzed I		Batch
Dinoseb		34,500	μg/Kg		15,000	1,000	03/19/09 10:59	DPC	38386
Surrogate	: DCAA		100 %	Limits:	20-150	1	03/19/09 7:05	DPC	38386

Qualifiers/	*	Surrogate Recovery outside accepted limits	* I	Recoveries affected by interferences or high background
Definitions	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	E	Value exceeds method calibration range	Н	Prepped / Analyzed out of holding time.
	J Estimated Value Analyte below reported detection limit		· M	Minimum value
	MDL	Method Dection Limit (unadjusted)	MQL	Method Quantitation Limit (adjusted)
	MRL	Method Reporting Limit	N	Refer to attached Non-Compliance Report
	Q	RPD >40% between primary and confirmation columns	SQL	Sample Quantitation Limit (adjusted MDL)

2760 Whitten Road

Memphis, Tannassae 38133

(601) 213-2400

AECOM EARTH TECH

Project

Cedar Chemicals

Site W. Helena, AR

10 Patewood Drive Building VI, Suite 500 Greenville, SC 29615 Description

Project No. 104336

Report of Analysis

Received 03/05/09

Matrix Aqueous

Sampled 03/05/09 11:00

Lab Order Number 0903061

Lab ID

0903061-009A

Field ID

TSB-1D

Prep Method 8	51A	Prep Batch(s)	23796			Date/Time Prepped 03/12/09 1		
Compound		Result	Units	MQL	DF	Date/Time Analyzed	Ву	Analytical Batch
Dinoseb		< 0.00270	mg/L	0.00270	1	03/17/09 2:03	KS	38333
Surrogate:	DCAA .		81 %	Limits: 20-150	1	03/17/09 2:03	KS	38333

Qualifiers/		*	Surrogate Recovery outside accepted limits	* 1	Recoveries affected by interferences or high background
Definitions		В	Analyte detected in the associated Method Blank	DF	Dilution Factor
		E	Value exceeds method calibration range	H	Prepped / Analyzed out of holding time.
		J	Estimated Value Analyte below reported detection limit	. M	Minimum value
		MDL	Method Dection Limit (unadjusted)	MQL	Method Quantitation Limit (adjusted)
		MRL	Method Reporting Limit	N	Refer to attached Non-Compliance Report
		Q	RPD >40% between primary and confirmation columns	SQL	Sample Quantitation Limit (adjusted MDL)
03/26/09	5087	AECO	M_GREENVILLE		•

2790 Whitten Road

Memphis, Tennessee 38133

100 F

Cedar Chemicals

an (901) 213-2440

AECOM EARTH TECH

Project

Site W. Helena, AR

10 Patewood Drive Building VI, Suite 500 Greenville, SC 29615 Description

Project No. 104336

Lab Order Number 0903061

Lab ID

0903061-010A

Field ID

IDW-4

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 10:30

1311 TCLP Characterization

Prep Batch 23741

Date/Time 03/09/09 14:00

Leachate

Analytical Method 8081A							
Prep Method 608	Prep Batch(s) 23	3770			Date/Time Prep	ped (03/11/09 11:57
					Date/Time		Analytical
Compound	Result	Units	MQL	DF	Analyzed	Ву	Batch
gamma-BHC	< 0.000160	mg/L	0.000160	10	03/19/09 15:46	DPC	38388
Chlordane	< 0.00100	mg/L	0.00100	10	03/19/09 15:46	DPC	38388
Endrin	< 0.000160	mg/L	0.000160	10	03/19/09 15:46	DPC	38388
Heptachlor	< 0.000160	mg/L	0.000160	10	03/19/09 15:46	DPC	38388
Heptachlor epoxide	< 0.000160	mg/L	0.000160	10	03/19/09 15:46	DPC	38388
Methoxychlor	0.00704Q	mg/L	0.000160	10	03/19/09 15:46	DPC	38388
Toxaphene	< 0.00120	mg/L	0.00120	10	03/19/09 15:46	DPC	38388
Surrogate: Decachlorobiphenyl		95 %	Limits: 36-116	10	03/19/09 15:46	DPC	38388
Surrogate: Tetrachloro-m-xylene	•	56 %	Limits: 25-123	10	03/19/09 15:46	DPC	38388

Qualifiers/	
Definitions	

- Surrogate Recovery outside accepted limits
- B Analyte detected in the associated Method Blank
- E Value exceeds method calibration range
- J Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit
 - Q RPD >40% between primary and confirmation columns
- I Recoveries affected by interferences or high background
- DF Dilution Factor
- H Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
- N Refer to attached Non-Compliance Report
- SQL Sample Quantitation Limit (adjusted MDL)

Environmental Testing & Consulting, Inc. (901) 213-2400

his, Tennessee 38133

AECOM EARTH TECH

10 Patewood Drive

Project

Cedar Chemicals

Site W. Helena, AR

Building VI, Suite 500 Greenville, SC 29615 Description

Project No. 104336

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 10:30

Lab Order Number 0903061

Lab ID

0903061-010A

Field ID

03/26/09

5087 AECOM_GREENVILLE

IDW-4

1311 TCLP Characterization

Prep Batch 23741

Date/Time 03/09/09 14:00

Leachate

Prep Method 8151A	Prep Batch(s) 2	23796				Date/Time Prep	ped 03	3/12/09 17:05
	Y .		-			Date/Time		Analytical
Compound	Result	Units	<u> </u>	MQL	DF	Analyzed	Ву	Batch
2,4-D	< 0.00200	mg/L	.*	0.00200	1	03/17/09 2:25	KS	38333
2,4,5-TP (Silvex)	< 0.000600	mg/L		0.000600	1	03/17/09 2:25	KS	38333
Surrogate: DCAA		59 %	Limits:	20-150	1	03/17/09 2:25	KS	38333

Qualifiers/	*	Surrogate Recovery outside accepted limits	* 1	Recoveries affected by interferences or high background
Definitions	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
5	E	Value exceeds method calibration range	H	Prepped / Analyzed out of holding time.
	J	Estimated Value Analyte below reported detection limit	M	Minimum value
	MDL	Method Dection Limit (unadjusted)	MQL	Method Quantitation Limit (adjusted)
	MRL	Method Reporting Limit	N	Refer to attached Non-Compliance Report
•	Q	RPD >40% between primary and confirmation columns	SQL	Sample Quantitation Limit (adjusted MDL)

Cedar Chemicals

AECOM EARTH TECH

Project

Site

W. Helena, AR

10 Patewood Drive Building VI, Suite 500 Greenville, SC 29615 Description

Project No. 104336

Report of Analysis

Received 03/05/09

Matrix Soil

Sampled 03/05/09 10:30

Lab Order Number 0903061

Lab ID

0903061-010A

Field ID

IDW-4

1311 TCLP Characterization

Prep Batch 23741

Date/Time 03/09/09 14:00

Leachate

Analytical Method 8270C							
Prep Method 3510C	Prep Batch(s)	23751			Date/Time Prep	ped (03/10/09 10:29
					Date/Time		Analytical
Compound	Result	Units	MQL	DF	Analyzed	Ву	Batch
2,4-Dinitrotoluene	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
Hexachlorobenzene	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
Hexachlorobutadiene	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
Hexachloroethane	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
2-Methylphenol	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
3&4-Methylphenol	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
Nitrobenzene	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
Pentachlorophenol	< 0.0400	mg/L	0.0400	1	03/16/09 21:42	MJ ·	38235
Pyridine	< 0.0400	mg/L	0.0400	1	03/16/09 21:42	MJ	38235
2,4,5-Trichlorophenol	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
2,4,6-Trichlorophenol	< 0.0200	mg/L	0.0200	1	03/16/09 21:42	MJ	38235
Surrogate: Nitrobenzene-d5		56 %	Limits: 29-110	1	03/16/09 21:42	MJ	38235
Surrogate: 2-Fluorobiphenyl	•	58 %	Limits: 38-107	1	03/16/09 21:42	MJ	38235
Surrogate: 4-Terphenyl-d14		78 %	Limits: 33-122	1	03/16/09 21:42	MJ	38235
Surrogate: Phenol-d6		34 %	Limits: 10-115	1	03/16/09 21:42	MJ	38235
Surrogate: 2,4,6-Tribromopher	nol	59 %	Limits: 40-125	1	03/16/09 21:42	MJ	38235
Surrogate: 2-Fluorophenol		39 %	Limits: 20-110	1	03/16/09 21:42	MJ	38235

Qualifiers/
Definitions

- Surrogate Recovery outside accepted limits
- Analyte detected in the associated Method Blank В
- Value exceeds method calibration range
- Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit
 - RPD >40% between primary and confirmation columns
- Recoveries affected by interferences or high background
- DF Dilution Factor
 - Н Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
- Refer to attached Non-Compliance Report
- SQL Sample Quantitation Limit (adjusted MDL)

5087 AECOM_GREENVILLE 03/26/09

Environmental Testing

104336

AECOM EARTH TECH

Project

Project No.

10 Patewood Drive Building VI, Suite 500 Greenville, SC 29615

Cedar Chemicals Description

Site

W. Helena, AR

Lab Order Number 0903061

Report of Analysis

Lab ID

0903061-010B

Received 03/05/09

Field ID

IDW-4

Matrix Soil

Sampled 03/05/09 10:30

1311 TCLP Zero Headspace for Volatiles

Prep Batch

Date/Time 03/09/09 14:00

Leachate

Analytical Method 8260B								
Prep Method 5030B	Prep Batch(s)	23771				Date/Time Prep	ped	03/11/09 12:02
		19				Date/Time		Analytical
Compound	Result	Units		MQL	DF	Analyzed	Ву	Batch
Benzene	< 0.0100	- mg/L		0.0100	10	03/11/09 18:54	LS	38225
2-Butanone (MEK)	< 0.200	mg/L		0.200	10	03/11/09 18:54	LS	38225
Carbon tetrachloride	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
Chlorobenzene	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
Chloroform	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
1,4-Dichlorobenzene	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
1,2-Dichloroethane	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
1,1-Dichloroethene	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
Tetrachloroethene	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
Trichloroethene	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
Vinyl chloride	< 0.0100	mg/L		0.0100	10	03/11/09 18:54	LS	38225
Surrogate: Dibromofluorometha	ne	109 %	Limits:	75-125	10	03/11/09 18:54	LS	38225
Surrogate: Toluene-d8		106 %	Limits:	85-120	10	03/11/09 18:54	LS	38225
Surrogate: 4-Bromofluorobenze	ne	98 %	Limits:	85-118	10	03/11/09 18:54	LS	38225
Surrogate: 1,2-Dichloroethane-c	14	112 %	Limits:	72-132	10	03/11/09 18:54	LS	38225

Qualifiers/	,
Definition	

- Surrogate Recovery outside accepted limits
- Analyte detected in the associated Method Blank В
- Value exceeds method calibration range
- Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- Method Reporting Limit
 - RPD >40% between primary and confirmation columns Q
- Recoveries affected by interferences or high background
- DF Dilution Factor
- Prepped / Analyzed out of holding time.
- Minimum value
- MQL Method Quantitation Limit (adjusted)
- Refer to attached Non-Compliance Report
- Sample Quantitation Limit (adjusted MDL)

5087 AECOM_GREENVILLE 03/26/09

2790 Whitten Road

Memphis, Tennessee 38133

(901) 213-2400

fax (901) 213-2440

A Laboratory Management Partner

Level II

Quality Control Reports

2790 Whitten Ro

Memehis, Tonnessee 38133

108866 28123 (801) 513

ax (901) 213-2440

Analytical QC Summary Report Form 4 Method Blank Summary

Soil

Herbicides

AECOM EARTH TECH

Order Number

0903061

Project

Cedar Chemicals

Description

Batch ID

23743

Instrument ID PEST3

23743-LB

This Method Blank applies to the following batch samples:

Lab Sample ID	Lab File ID	Analyzed Date	/ Time	Dilution Factor
23743-LB	P3031809AHRB	03/19/09	3:43	1
23743-LCS	P3031809AHRB	03/19/09	4:05	1
0903061-001A	P3031809AHRB	03/19/09	4:28	1
0903061-001AMS	P3031809AHRB	03/19/09	4:50	1
0903061-001AMSD	P3031809AHRB	03/19/09	5:13	1
0903061-002A	P3031809AHRB	03/19/09	5:35	1
0903061-003A	P3031809AHRB	03/19/09	5:58	1
0903061-004A	P3031809AHRB	03/19/09	6:20	1
0903061-005A	P3031809AHRB	03/19/09	6:43	1
0903061-006A	P3031809AHRB	03/19/09	7:05	1
0903061-001A	P3031809AHRB	03/19/09	8:57	1000
0903061-002A	P3031809AHRB	03/19/09	9:29	1000
0903061-003A	P3031809AHRB	03/19/09	9:51	1000
0903061-004A	P3031809AHRB	03/19/09	10:14	1000
0903061-005A	P3031809AHRB	03/19/09	10:36	1000
0903061-006A	P3031809AHRB	03/19/09	10:59	1000
0903061-002A	P3031909Bhrb	03/20/09	3:47	100
0903061-004A	P3031909Bhrb	03/20/09	4:10	100
0903061-005A	P3031909Bhrb	03/20/09	4:32	100
0903061-002A	P3032309Bhrb	03/23/09	15:52	1000
0903061-004A	P3032309Bhrb	03/23/09	16:15	1000

Qualifiers:

- Surrogate Recovery outside accepted limits
- B Analyte detected in the associated Method Blank
- E Value exceeds method calibration range
- J Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit

- * I Recoveries affected by interferences or high background
- DF Dilution Factor
- H Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
 - Refer to attached Non-Compliance Report

Page 21 of 61

2790 Whitten Read

Memphis, Tennessee 38133

(901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report Form 4 Method Blank Summary

Soil

Herbicides

AECOM EARTH TECH

Order Number

0903061

Project

Cedar Chemicals

Description

0903061-005A

P3032309Bhrb

03/23/09

16:38

1000

Qualifiers:

- Surrogate Recovery outside accepted limits
- B Analyte detected in the associated Method Blank
- E Value exceeds method calibration range
- J Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit

- * I Recoveries affected by interferences or high background
- DF Dilution Factor
- H Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
 - N Refer to attached Non-Compliance Report

Page 22 of 61

2750 Whitten Road

(901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

0903061 Order Number

Project

Cedar Chemicals

Description

Method Blank 23743-LB Soil **Organics** Prep Method 8151A 03/09/09 15:03 Batch 23743 Date **Analytical Method** 8151A Date 03/19/09 3:43 Batch 38386 Dilution Factor 1 Ву DPC

Compound Result Units MQL Dinoseb < 15.0 µg/Kg 15.0 Surrogate: DCAA 50 Limits: 20-150

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Rend

Memphis, Tennessee 38133

8133 (901) 213-2400

Far (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

Soil **Organics Laboratory Control Spike** 23743-LCS 8151A Batch 23743 03/09/09 15:03 Prep Method Date DPC **Analytical Method** 8151A Batch 38386 Date 03/19/09 4:05 Dilution Factor 1 Ву LCS Spike QC Compound Conc. Units Added % Rec Limits Dinoseb 10.5 μg/Kg 41.7 25 20-150 Surrogate: DCAA 69 Limits: 20-150

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2790 Whitten Road Memphis, Tennossee 98193 (901) 213-2400 Fau. (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Organi	cs	Sample Mat	rix Spike			09	03061-00	1AMS	Soil	
Prep	Method	8151A	Batch	23743	Date	03/09/09 15:0	03			
Analytica	al Method	8151A	Batch	38386	Date	03/19/09 4:5	0 Dilut	ion Factor 1	Ву	DPC
			MS		Spike	Sample		QC		
Compou	ınd		Conc.	Units	Added	Conc.	% Rec	Limits		

Surrogate: DCAA

Limits: 20-150

0903061

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

0903061

Environmental Testing & Consulting, Inc. 2790 Variation Rend Memphis, Tennessee 38133 (901) 213-2400 Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Organi	ics	Sample Mat	rix Spike D	uplicate		09	03061-00	1AMSD		Soil	
Prep	Method-	8151A	Batch	23743	Date	03/09/09 15:0	3				
Analytic	al Method	8151A	Batch	38386	Date	03/19/09 5:13	3 Diluti	on Factor 1		Ву	DPC
			MSD		Spike	Sample	,	QC		RI	PD
Compo	und		Conc.	Units	Added	Conc.	% Rec	Limits	% RPD	Lir	mit

Surrogate: DCAA

Limits: 20-150

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitton Road

Memphis, Tonnossou 38133

. .

As (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

Metals Met

Method Blank

Patch

< 0.0010

Batch 23748

Date

23748-LB

Soil

Prep

Method

7470A 7470A

Batch 38286

Date

03/10/09 9:27 03/10/09 11:16

Dilution Factor 1

By TJ

Compound

Mercury

Analytical Method

Result

Units mg/L MQL 0.0010

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Rend

(901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

mg/L

Cedar Chemicals

Order Number

Mercury

0903061

Description

Metals		TCLP Blank	Fluid 1			2374 ⁻	1-TCLPBLFL1	Soil
Prep	Method	7470A	Batch	23748	Date	03/10/09 9:27		
Analytica	al Method	7470A	Batch	38286	Date	03/10/09 11:29	Dilution Factor 1	By TJ
Compou	ınd		Resulț	Units	MQL			
Mercury			< 0.0010	mg/L	0.001	0		

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2760 Whitien Road Memphis, Tennossee 38133 (901) 213-2400 Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Soil Metals **TCLP Blank Fluid 2** 23741-TCLPBLFL2 Prep Method 7470A Batch 23748 Date 03/10/09 9:27 Batch 38286 **Analytical Method** 7470A Date 03/10/09 11:30 Dilution Factor 1 TJ Ву

Units MQL Compound Result < 0.0010 0.0010 Mercury mg/L

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Road

0.0058

mg/L

Memohia, Tennessea 38133.

(901) 213-2490

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

116

80-120

Order Number

Mercury

0903061

Description

Soil Metals **Laboratory Control Spike** 23748-LCS 7470A Batch 23748 03/10/09 9:27 Prep Method Date Analytical Method 7470A Batch 38286 Date 03/10/09 11:19 Dilution Factor 1 Ву TJ LCS Spike QC Compound Conc. Units Added % Rec Limits

0.0050

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2700 Whition Road Memphis, Tonnossee 38199 (901) 219-2400 Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

0903061

Project

Cedar Chemicals

Description

Metals		Sample Mat	rix Spike	•		090	3106 <i>-</i> 00	1AMS	Soil	٠.
Prep	Method	7470A	Batch	23748	Date	03/10/09 9:27				
Analytic	al Method	7470A	Batch ·	38286	Date	03/10/09 11:2	7 Dilutio	on Factor 1	Ву	TJ
			MS		Spike	Sample		QC		
Compo	und		Conc.	Units	Added	Conc.	% Rec	Limits		
Mercury			0.0059	mg/L	0.0050	< 0.0010	118	80-120		

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Ro

Memphis, Tennessee 38133

(931) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number 0903061 Description

Metals	Sample Mat	rix Spike D	uplicate		090	3106 <i>-</i> 00	1AMSD		Soil
Prep Method	7470A	Batch	23748	Date	03/10/09 9:27				
Analytical Method	1 7470A	Batch	38286	Date	03/10/09 11:28	B Dilutio	on Factor 1		By TJ
	······	MSD	,	Spike	Sample		QC		RPD
Compound		Conc.	Units	Added	Conc.	% Rec	Limits	% RPD	Limit
Mercury		0.0060	mg/L	0.0050	< 0.0010	120	80-120	2	20

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten R:

Memohis, Tonnessee 38133

see 38199 (901) 219-5

ax (901) 213-2440

Analytical QC Summary Report Form 4 Method Blank Summary

Aqueous

GCMS Semi-Volatiles

AECOM EARTH TECH-

Order Number

0903061

- Project

Cedar Chemicals

Description

Batch ID

23751

Instrument ID

BNA2

23751-LB

This Method Blank applies to the following batch samples:

Lab Sample ID	Lab File ID	Analyzed Date	/ Time	Dilution Factor
23751-LB	1101012.D	03/16/09	20:12	1
23751-LCS	1201013.D	03/16/09	20:42	1
23751-LCSD	1301014.D	03/16/09	21:12	1
0903061-010A	1401015.D	03/16/09	21:42	1
0903106-001A	1701018.D	03/16/09	23:13	1
0903106-001AMS	1801019.D	03/16/09	23:43	1
0903106-001AMSD	1901020.D	03/17/09	0:14	1

Qualifiers:

- Surrogate Recovery outside accepted limits
- B Analyte detected in the associated Method Blank
- E Value exceeds method calibration range
- J Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit

- * I Recoveries affected by interferences or high background
- DF Dilution Factor
- H Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
 - N Refer to attached Non-Compliance Report

Page 33 of 61

0903061

Environmental Testing & Consulting, Inc.

2790 Whitten Rea

Memphis, Tennessee 38133

(901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

SemiVola	tiles	Method B	llank				2375 ⁻	I-LB	Aqu	eous
Prep M	ethod	3510C	Batch	23751	Date	03/10/09	10:29			
Analytical IV	lethod	8270C	Batch	38235	Date	03/16/09	20:12	Dilution Factor 1	Ву	MJ
Compound			Result	Units	MQL					
2,4-Dinitrotol	uene		< 0.00500	mg/L	0.00500)				
Hexachlorobe	enzene		< 0.00500	mg/L	0.00500)				
Hexachlorobi	utadiene	:	< 0.00500	mg/L	0.00500)				
Hexachloroet	hane		< 0.00500	mg/L	0.00500)				
2-Methylpher	nol		< 0.00500	mg/L	0.00500)				
3&4-Methylp	henol		< 0.00500	mg/L	0.00500)				
Nitrobenzene	•		< 0.00500	mg/L	0.00500)				
Pentachlorop	henol		< 0.0100	mg/L	0.0100)				
Pyridine			< 0.0100	mg/L	0.0100)				
2,4,5-Trichlo	ropheno	d .	< 0.00500	mg/L	0.00500)				
2,4,6-Trichlo	ropheno	l .	< 0.00500	mg/L	0.00500)				
	5	Surrogate: N	litrobenzene-d5		50	3 %	Limits:	29-110		
	5	Surrogate: 2	-Fluorobiphenyl		56	5 %	Limits:	38-107		
	5	Surrogate: 4	-Terphenyl-d14		79	9 %	Limits:	33-122		
	5	Surrogate: F	henol-d6		27	7 %	Limits:	10-115		
	5	Surrogate: 2	,4,6-Tribromophen	ol	62	2 %	Limits:	40-125		

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Surrogate: 2-Fluorophenol

MDL Method Dection Limit (unadjusted)

Limits: 20-110

2790 Whitten Road

(901) 213-2400

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

SemiVolatiles	Laborat	ory Control Spi	ke			2375 ⁻	1-LCS		Aqu	eous
rep Method	3510C	Batch	23751	Date	03/10/09	9 10:29				
Analytical Method	8270C	Batch	38235	Date	03/16/09	9 20:42	Dilutio	n Factor 1	Ву	MJ
		LCS		Spike		•		QC		
Compound		Conc.	Units	Added		%	Rec	Limits		
2,4-Dinitrotoluene		0.0383	mg/L	0.0500)		77	24-147		
Hexachlorobenzene		0.0316	mg/L	0.0500)		63	18-136		
Hexachlorobutadien	е	0.0215	mg/L	0.0500)	•	43	22-109		
Hexachloroethane		0.0187	mg/L	0.0500)		37	16-107		
2-Methylphenol		0.0247	mg/L	0.0500)		49	22-97		
3&4-Methylphenol		0.0251	mg/L	0.0500)		50	21-96		
Nitrobenzene		0.0264	mg/L	0.0500)		53	27-117		
Pentachlorophenol		0.0362	mg/L	0.0500)		72	17-142		
Pyridine		0.0261	mg/L	0.0500	•		52	10-71		
2,4,5-Trichlorophend	ol	0.0302	mg/L	0.0500)		60	26-118		
2,4,6-Trichlorophend	ol	0.0299	mg/L	0.0500)		60	26-115		
	Surrogate:	Nitrobenzene-d5	•	49	%	Limits:	29-110			
	Surrogate:	2-Fluorobiphenyl		51	l %	Limits:	38-107			
	Surrogate:	4-Terphenyl-d14		81	۱ %	Limits:	33-122			
	Surrogate:	Phenol-d6		21	۱ %	Limits:	10-115			
	Surrogate:	2,4,6-Tribromophen	ol	58	3 %	Limits:	40-125			
	Surrogate:	2-Fluorophenol		27	7 %	Limits:	20-110			

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Rend

Memphis, Tennessee 38133

133 (901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

Semi\	/olatiles	Labora	tory Control Sp	ike Duplica	ate		2375	1-LCSD)		Aqueous
Prep	Method	3510C	Batch	23751	Date	03/10	09 10:29				
Analyti	cal Method	8270C	Batch	38235	Date	03/16	/09 21:12	Dilutio	n Factor 1		By MJ
			LCSD		Spike	,			QC		RPD
Compo	ound		Conc.	Units	Added		C.	% Rec	Limits	% RPD	Limit
2,4-Din	itrotoluene		0.0349	mg/L	0.0500)		70	24-147	9	20
Hexach	nlorobenzene		0.0292	mg/L	0.0500)		58	18-136	8	20
Hexach	lorobutadiene	е	0.0226	mg/L	0.0500)		45	22-109	5	20
Hexach	loroethane		0.0205	mg/L	0.0500)		41	16-107	9	20
2-Meth	ylphenol		0.0248	mg/L	0.0500)	*	50	22-97	0	20
3&4-M	ethylphenol		0.0253	mg/L	0.0500)		51	21-96	0	20
Nitrobe	nzene		0.0272	mg/L	0.0500)		54	27-117	3	20
Pentac	hiorophenol		0.0349	mg/L	0.0500)		70	17-142	4	20
Pyridin	е		0.0237	mg/L	0.0500)		48	10-71	10	20
2,4,5-T	richloropheno	ol	0.0298	mg/L	0.0500)		60	26-118	1	20
2,4,6-T	richloropheno	ol	0.0279	mg/L	0.0500)		56	26-115	7	20
		Surrogate:	Nitrobenzene-d5		48	3 %	Limits	: 29-110			
		Surrogate:	2-Fluorobiphenyl		47	7 %	Limits	: 38-107			
		Surrogate:	4-Terphenyl-d14		74	1 %	Limits	33-122			
		Surrogate:	Phenol-d6		22	2 %	Limits	: 10-115			
		Surrogate:	2,4,6-Tribromophen	ol	56	6 %	Limits	: 40-125			
		Surrogate:	2-Fluorophenol		28	3 %	Limits	: 20-110			

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2700 Whitten Road Memphis, Tennessee 38133 (901) 219-2400 Fax (901) 219-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description '

SemiVolatiles S	ample	Matrix Spike			09	03106-001	AMS		Aqu	ous
Prep Method	3510C	Batch	23751	Date	03/10/09 10:2	29				
Analytical Method	8270C	Batch	38235	Date	03/16/09 23:	43 Dilutio	n Factor 1		Ву	MJ
		MS		Spike	Sample		QC	<u> </u>		
Compound		Conc.	Units	Added	Conc.	% Rec	Limits			
2,4-Dinitrotoluene		0.146	mg/L	0.200	< 0.020	0 73	24-147			
Hexachlorobenzene		0.125	mg/L	0.200	< 0.020	0 62	18-136			
Hexachlorobutadiene		0.0995	mg/L	0.200	< 0.020	0 50	22-109			
Hexachloroethane		0.0984	mg/L	0.200	< 0.020	0 49	16-107			
2-Methylphenol		0.143	mg/L	0.200	< 0.020	0 72	22-97			
3&4-Methylphenol		0.248	mg/L	0.400	< 0.020	0 62	21-96			
Nitrobenzene		0.124	mg/L	0.200	< 0.020	0 62	27-117			
Pentachlorophenol		0.164	mg/L	0.200	< 0.040	0 82	17-142			
Pyridine		0.0837	mg/L	0.200	< 0.040	0 42	10-71			
2,4,5-Trichlorophenol		0.151	mg/L	0.200	< 0.020	0 76	26-118			
2,4,6-Trichlorophenol		0.142	mg/L	0.200	< 0.020	0 71	26-115			
Su	urrogate:	Nitrobenzene-d5		د 60	9 % Lir	nits: 29-110				
Su	urrogate:	2-Fluorobiphenyl		6	3 % Lir	nits: 38-107				
, Su	urrogate:	4-Terphenyl-d14		- 8-	1 % Lir	nits: 33-122				
, Su	urrogate:	Phenol-d6		. 36	3 % Lir	mits: 10-115				
Su	urrogate:	2,4,6-Tribromopher	ol	62	2 % Lir	nits: 40-125				
Su	urrogate:	2-Fluorophenol		4	5 % Lir	nits: 20-115				

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Ro

Mercelia, Tonnessee 38133

(901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH
Order Number 0903061

Project

Cedar Chemicals

Description

SemiVolatiles	Sample	Matrix Spike Du	plicate		(090	3106-001	AMSD		Aqueous
Prep Method	3510C	Batch 2	3751	Date:	03/10/09 1	0:29				
Analytical Method	8270C	Batch 3	8235	Date	03/17/09	D:14	Dilution	n Factor 1		By MJ
		MSD		Spike	Sample			QC		RPD
Compound		Conc.	Units	Added	Conc.		% Rec	Limits	% RPD	Limit
2,4-Dinitrotoluene		0.142	mg/L	0.200	< 0.0	200	7.1	24-147	3	20
Hexachlorobenzene		0.124	mg/L	0.200	< 0.0	200	62	18-136	0	20
Hexachlorobutadiene	:	0.0956	mg/L	0.200	< 0.0	200	48	22-109	4	20
Hexachloroethane		0.0955	mg/L	0.200	< 0.0	200	48	16-107	3	20
2-Methylphenol		0.142	mg/L	0.200	< 0.0	200	71	22-97	0	20
3&4-Methylphenol		0.249	mg/L	0.400	< 0.0	200	. 62	21-96	0	20
Nitrobenzene		0.122	mg/L	0.200	< 0.0	200	61	27-117	2	20
Pentachlorophenol		0.162	mg/L	0.200	< 0.0	400	81	17-142	0	20
Pyridine		0.0885	mg/L	0.200	< 0.0	400	44	10-71	6	20
2,4,5-Trichloropheno	d .	0.158	mg/L	0.200	< 0.0	200	79	26-118	4	20
2,4,6-Trichloropheno	l	0.142	mg/L	0.200	< 0.0	200	71	26-115	0	20
5	Surrogate:	Nitrobenzene-d5		59	%	Limits	s: 29-110			
5	Surrogate:	2-Fluorobiphenyl		62	%	Limits	s: 38-107			
\$	Surrogate:	4-Terphenyl-d14		81	%	Limits	s: 33-122			
5	Surrogate:	Phenol-d6		36	%	Limits	s: 10-115			
\$	Surrogate:	2,4,6-Tribromophenol		61	%	Limits	s: 40-125			
5	Surrogate:	2-Fluorophenol		43	%	Limits	s: 20-110			

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2790 Whitpen Road Memphis, Tennosaeo 38139 (501) 213-2400 Fax (501) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

Description

Metals	;	Method Blank				23753	B-LB	Soil	
Prep	Method	3005A	Batch	23753	Date	03/10/09 11:53			
Analytic	al Method	6010B	Batch	38221	Date	03/11/09 20:58	Dilution Factor 1	By J	TR

Compound	Result	Units	MQL	·
Silver	< 0.005	mg/L	0.005	
Arsenic	< 0.025	mg/L	0.025	
Barium	< 0.025	mg/L	0.025	
Cadmium	< 0.005	mg/L	0.005	
Chromium	< 0.010	mg/L	0.010	
Lead	< 0.010	mg/L	0.010	
Selenium	< 0.050	mg/L	0.050	

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2700 Whitten R

Memohis, Tennessee 32:133

133 (901) 213-2400

Fax (901) 253-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number 0903061 Description

Metals	•	TCLP Blank Flu	uid 1			23741	-TCLPBLFL1	Soil	
Prep	Method	3005A	Batch	23753	Date	03/10/09 11:53			
Analytical	Method	6010B	Batch	38221	Date	03/11/09 22:15	Dilution Factor 1	Ву	JTR

Compound	Result	Units	MQL
Silver	< 0.005	mg/L	0.005
Arsenic	< 0.025	mg/L	0.025
Barium	< 0.025	mg/L	0.025
Cadmium	< 0.005	mg/L	0.005
Chromium	< 0.010	mg/L	0.010
Lead	< 0.010	mg/L	0.010
Selenium	< 0.050	mg/L	0.050

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2700 Whitten Road Memphis, Tennosseo 38193 (501) 213-2400 Fau (501) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

0903061

Project

Cedar Chemicals

Description

Metals	:	TCLP Blank	Fluid 2			23741-TCLPBLFL2	Soil
Prep	Method	3005A	Batch	23753	Date	03/10/09 11:53	4
Analytic	al Method	6010B	Batch	38221	Date	03/11/09 22:22 Dilution Factor 1	By JTR

Compound	Result	Units	MQL
Silver	< 0.005 -	mg/L	0.005
Arsenic	< 0.025	mg/L	0.025
Barium	< 0.025	mg/L	0.025
Cadmium	< 0.005	mg/L	0.005
Chromium	< 0.010	mg/L	0.010
Lead	< 0.010	mg/L	0.010
Selenium	< 0.050	mg/L	0.050

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

0903061

Environmental Testing & Consulting, Inc.

2790 Whitten Road

Merzehis, Tennessee 38133

[901] 213-2400

Face (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Vietals	Laboratory	Control Spike	е		2375	3-LCS		Soil
Prep Method	3005A	Batch 23	3753	Date	03/10/09 11:53			
Analytical Method	6010B	Batch 38	3221	Date	03/11/09 21:04	Dilutio	on Factor 1	By JTR
		LCS		Spike			QC	
Compound		Conc.	Units	Added	9	%Rec	Limits	
Silver		0.100	mg/L	0.100)	100	80-120	
Arsenic		0.103	mg/L	0.100)	103	80-120	
Barium		1.02	mg/L	1.00)	102	80-120	
Cadmium		0.102	mg/L	0.100)	102	80-120	
Chromium		1.02	mg/L	1.00)	102	80-120	
Lead		0.102	mg/L	0.100)	102	80-120	
Selenium		0.098	mg/L	0.100)	98	80-120	

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2700 Whitten Road Memphis, Tennossee 38133 (501) 213-2400 Fax (501) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Metals		Sample Mati	rix Spike			0903064-001AMS					
Prep	Method	3005A	Batch	23753	Date	03/10/09 11:53	}				
Analytica	Method	6010B	Batch	38221	Date	03/11/09 22:02	2 Dilutio	on Factor 1		By JTR	
			MS		Spike	Sample		QC			
Compou	nd		Conc.	Units	Added	Conc.	% Rec	Limits			
Silver			0.529	mg/L	0.500	< 0.005	106	70-125			
Arsenic			0.622	mg/L	0.500	0.093	106	70-125			
Barium			5.07	mg/L	5,00	< 0.025	101	70-125			
Cadmium	ı		0.486	mg/L	0.500	< 0.005	97	70-125			
Chromiun	n .		4.98	mg/L	5.00	0.043	99	70-125			
Lead		•	0.498	mg/L	0.500	< 0.010	100	70-125			
Selenium			0.522	mg/L	0.500	< 0.050	104	70-125			

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Road

Memohia, Tonnessee 38133

33 (901) 213-2400

Fax (201) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

Metals		Sample Mat	rix Spike D	uplicate		090	3064-00	1AMSD		Soil
Prep	Method	3005A	. Batch	23753	Date	03/10/09 11:53				
Analytic	al Method	6010B	Batch	38221	Date	03/11/09 22:09	Dilutio	on Factor 1		By JTR
			MSD		Spike	Sample		QC		RPD
Compo	und		Conc.	Units	Added	Conc.	% Rec	Limits	% RPD	Limit
Silver			0.534	mg/L	0.500	< 0.005	107	70-125	0	20
Arsenic			0.627	mg/L	0.500	0.093	107	70-125	0	20
Barium			5.12	mg/L	5.00	< 0.025	102	70-125	0	20
Cadmiur	n		0.491	mg/L	0.500	< 0.005	98	70-125	1	20
Chromiu	m		5.04	mg/L	5.00	0.043	100	70-125	1	20
Lead			0.505	mg/L	0.500	< 0.010	101	70-125	1	20
Seleniun	n		0.527	mg/L	0.500	< 0.050	105	70-125	0	20

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Vinimon Road

Memphis, Tannossea 38133

(901) 213-24

ax (931) 213-2440

Analytical QC Summary Report Form 4 Method Blank Summary

Aqueous

Pesticides

AECOM EARTH TECH

Order Number

0903061

Project

Cedar Chemicals

Description

Batch ID

23770

Instrument ID

PEST2

23770-LB

This Method Blank applies to the following batch samples:

Lab Sample ID	Lab File ID	Analyzed Date	Dilution Factor	
0903061-010A	P2031909APST	03/19/09	15:46	10
23770-LB	P2032309APST	03/23/09	14:32	10
23770-LCS	P2032309APST	03/23/09	14:59	10
23770-LCSD	P2032309APST	03/23/09	15:26	10
23741-TCLPBLFL1	P2032309APST	03/23/09	17:24	10

Qualifiers:

- Surrogate Recovery outside accepted limits
- B Analyte detected in the associated Method Blank
- E Value exceeds method calibration range
- J Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit

- * I Recoveries affected by interferences or high background
- DF Dilution Factor
- H Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
- N , Refer to attached Non-Compliance Report

Page 45 of 61

Environmental Testing & Consulting, Inc. (901) 213-2400

Fat (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

Organics		Method Blank	-			23770	Aqueous		
Prep	Method	3510C	Batch	23770	Date	03/11/09 11:57			
Analytica	al Method	8081A	Batch	38388	Date	03/23/09 14:32	Dilution Factor 10	Ву	DPC

Compound	Result	Units	MQL			
gamma-BHC	< 0.000400	mg/L	0.0000400			
Chlordane	< 0.000250	mg/L	0.000250			
Endrin	< 0.0000400	mg/L	0.0000400			
Heptachlor	< 0.0000400	mg/L	0.0000400			
Heptachlor epoxide	< 0.0000400	mg/L	0.0000400			
Hexachlorobenzene	< 0.000400	mg/L	0.000400			
Methoxychlor	< 0.0000400	mg/L	0.0000400			
Toxaphene	< 0.000300	mg/L	0.000300			
Surrogate	e: Decachlorobiphenyl		98	%	Limits:	36-116

Surrogate: Tetrachloro-m-xylene Limits: 25-123

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2700 Whitien Road Momphis, Toniossou 38133 (901) 213-2400 Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Organ	ics	TCLP Blank	Fluid 1	• • •	,	23741-TCLPBLFL1	Aqueous
Prep	Method	3510C	Batch	23770	Date	03/11/09 11:57	
Analytic	al Method	8081A	Batch	38388	Date	03/23/09 17:24 Dilution Factor 10	By DPC

Compound	Result	Units	MQL			
gamma-BHC	< 0.000160	mg/L	0.000160			
Chlordane	< 0.00100	mg/L	0.00100			
Endrin	< 0.000160	mg/L	0.000160			
Heptachlor	< 0.000160	mg/L	0.000160			
Heptachlor epoxide	< 0.000160	mg/L	0.000160			
Hexachlorobenzene	< 0.00160	mg/L	0.00160			
Methoxychlor	< 0.000160	mg/L	0.000160			•
Toxaphene	< 0.00120	mg/L	0.00120			
Surro	gate: Decachlorobiphenyl		. 115	%	Limits:	36-116

Surrogate: Tetrachloro-m-xylene

Limits: 25-123

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

0903061

Environmental Testing & Consulting, Inc.

9290 Marian Pa

Moraphis, Tennessee 38133

i3 (901) 213-24**0**0

Fax: (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Organi	cs	Laborat	ory Control Spi	ke			2377	0-LCS		Aqu	eous
Prep	Method	3510C	Batch	23770	Date	03/11/09	11:57				
Analytical Method		- 8081A	Batch	38388	Date	03/23/09	14:59	Dilutio	n Factor 10	Ву	DPC
			LCS		Spike				QC		
Compou	und		Conc.	Units	Added		%	Rec	Limits		
gamma-l	внс		0.000716	mg/L	0.00100)		72	41-102		
Endrin			0.000829	mg/L	0.00100)		83	45-117		
Heptachl	lor		0.000725	mg/L	0.00100)		72	40-110		
Heptachl	lor epoxide		0.000793	mg/L	0.00100)		79	42-115		
Methoxy	chlor		0.000983	mg/L	0.00100)		98	39-140		
		Surrogate:	Decachlorobiphenyl		103	2 %	Limits:	36-116			
		Surrogate:	Tetrachloro-m-xylen	e	5	2 %	Limits:	25-123			

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2760 Whitipen Road Membriles, Tourinosage 38139 (501) 213-2400 Fau (501) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

.Description 0903061 Order Number

Organics	Laborat	tory Control Spi	ke Duplica	ate		2377	0-LCSD	. 1		Aqueous
Prep Method	3510C	Batch	23770	Date	03/11/0	9 11:57				
Analytical Method	8081A	Batch	38388	Date	03/23/0	9 15:26	Dilutio	n Factor 10	ס	By DPC
		LCSD		Spike				QC	*****	RPD
Compound		Conc.	Units	Added		%	Rec	Limits	% RPD	Limit
gamma-BHC		0.000726	mg/L	0.0010	0		73	41-102	1	20
Endrin		0.000797	mg/L	0.0010	0		80	45-117	4	20
Heptachlor		0.000740	mg/L	0.0010	0		74	40-110	2	20
Heptachlor epoxide	!	0.000758	mg/L	0.0010	0		76	42-115	5	20
Methoxychlor	•	0.00106	mg/L	0.00108	0		106	39-140	8	20
	Surrogate:	Decachlorobiphenyl		10	5 %	Limits:	36-116			
	Surrogate:	Tetrachloro-m-xylene	е	. 5	7 %	*Limits:	25-123			

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Road

Memphis, Tennossea 38133

(901) 213-2400

Face (901) 213-2440

Analytical QC Summary Report Form 4 Method Blank Summary

Aqueous

GCMS Volatiles

AECOM EARTH TECH

Order Number

0903061

Project

Cedar Chemicals

Description

Batch ID

23771

Instrument ID VOC4

23771-LB

This Method Blank applies to the following batch samples:

Lab Sample ID	Lab File ID	Analyzed Date	/ Time	Dilution Factor
23771-LCS	1002lcs.d	03/11/09	13:30	1
23771-LB	1005.d	03/11/09	15:27	1
23740-TCLPBLFL1	1010.d	03/11/09	18:20	10
0903061-010B	1011.d	03/11/09	18:54	10
0903106-001B	1015.d	03/11/09	21:12	10
0903106-001BMS	1018.d	03/11/09	22:56	10
0903106-001BMSD	1019.d	03/11/09	23:30	10

Qualifiers:

- Surrogate Recovery outside accepted limits
- B Analyte detected in the associated Method Blank
- E Value exceeds method calibration range
- J Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit

- * I Recoveries affected by interferences or high background
- DF Dilution Factor
- H Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
 - N Refer to attached Non-Compliance Report

Environmental Testing & Consulting, Inc. 2790 Whitten Road Metaphis, Tonnussee 38193 (501) 213-2400 Fax (601) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH Order Number 0903061 Project

Cedar Chemicals

Description

Volatiles		Method Blank			· · · · · · · · · · · · · · · · · · ·	23771-LB	Aqueous
Prep	Method	5030B	Batch	23771	Date	03/11/09 12:02	
Analytic	al Method	8260B	Batch	38225	Date	03/11/09 15:27 Dilution Factor 1	By LS

Compound		Result	Units	MQL				
Benzene		< 0.00100	mg/L	0.00100				
2-Butanone (MEK)	< 0.0200	mg/L	0.0200				
Carbon tetrachlori	de	< 0.00100	mg/L	0.00100				
Chlorobenzene		< 0.00100	mg/L	0.00100				
Chloroform		< 0.00100	mg/L	0.00100				
1,4-Dichlorobenze	ne	< 0.00100	mg/L	0.00100				
1,2-Dichloroethane	e .	< 0.00100	mg/L	0.00100				
1,1-Dichloroethene	е	< 0.00100	mg/L	0.00100				
Tetrachloroethene		< 0.00100	mg/L	0.00100				
Trichloroethene		< 0.00100	mg/L	0.00100				
Vinyl chloride		< 0.00100	mg/L	0.00100				
,	Surrogate:	Dibromofluoromethane		109	%	Limits:	75-125	
	Surrogate:	Toluene-d8		101	%	Limits:	85-120	
	Surrogate:	4-Bromofluorobenzene		101	%	Limits:	85-118	
•	Surrogate:	1,2-Dichloroethane-d4		112	%	Limits:	72-132	

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

0903061

Environmental Testing & Consulting, Inc.

2790 Whitten Re

Memphis, Tennessee 38133

33 (901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number

Project

Cedar Chemicals

Description

Volatiles	TCLP B	lank Fluid 1					23740	0-TCLPBLFL1	Aqu	eous
Prep Metho	od 5030B	Batch	23771	Date	(03/11/09	12:02	•		
Analytical Meth	od 8260B	Batch	38225	Date		03/11/09	18:20	Dilution Factor 10	Ву	LS
Compound		Result	Units		MQL				- <u>-</u>	
Benzene		< 0.0100	mg/L		0.0100					
2-Butanone (MEI	K)	< 0.200	mg/L		0.200					
Carbon tetrachlo	ride	< 0.0100	mg/L		0.0100					
Chlorobenzene		< 0.0100	mg/L		0.0100					
Chloroform		< 0.0100	mg/L		0.0100					
1,4-Dichlorobenz	tene	< 0.0100	mg/L		0.0100					
1,2-Dichloroetha	ne	< 0.0100	mg/L		0.0100					
1,1-Dichloroether	ne	< 0.0100	mg/L		0.0100					
Tetrachloroethen	ie	< 0.0100	mg/L		0.0100					٠.
Trichloroethene		< 0.0100	mg/L	,	0.0100					
Vinyl chloride	· .	< 0.0100	mg/L		0.0100					
	Surrogate:	Dibromofluorometha	ane		103	%	Limits:	75-125		
	Surrogate:	Toluene-d8			105	%	Limits:	85-120		
	Surrogate:	4-Bromofluorobenze	ene		102	%	Limits:	85-118		

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Surrogate: 1,2-Dichloroethane-d4

2760 Whitten Road

Memphis, Tonnossee 28122

(\$01) 2 (\$01) 2 (\$01) 2

Fas (501) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

- Order Number

- 0903061

Project

Cedar Chemicals

Description

Volatiles	Laborat	ory Con	trol Spi	ke			2377	1-LCS		Aqu	ieous
Prep Method	5030B		-	23771	Date	03/11/0	09 12:02	4			
Analytical Method	8260B	•	Batch	38225	Date	03/11/0	09 13:30	Dilutio	n Factor 1	Ву	LS
			LCS		Spike		· , <u> </u>		QC		
Compound			Conc.	Units	Added		%	Rec	Limits		
Benzene			0.0976	mg/L	0.10	0		98	80-120		
2-Butanone (MEK)	•		0.0776	mg/L	0.10	0		78	40-140		
Carbon tetrachloride	•		0.100	mg/L	0.10	0		100	65-140		
Chlorobenzene		•	0.0965	mg/L ·	0.10	0		96	80-120		
Chloroform			0.0982	mg/L	0.10	0		98	80-120		
1,4-Dichlorobenzen	e		0.0896	mg/L	0.10	0		90	75-125		
1,2-Dichloroethane			0.0897	mg/L ·	0.10	0 .		90	70-130		
1,1-Dichloroethene			0.100	mg/L	0.10	0		100	80-120		
Tetrachloroethene	•		0.0934	mg/L	0.10	0 _		93	45-150		
Trichloroethene			0.0914	img/L	0.10	0		91	70-125		
Vinyl chloride			0.0843	mg/L	0.10	0		84	80-120		
,	Surrogate:	Dibromofl	uorometha	ne	10	0 %	Limits:	75-125			
	Surrogate:	Toluene-d	18		9	7 %	Limits:	85-120			
	Surrogate:	4-Bromofl	uorobenze	ne	10	1 %	Limits:	85-118			
	Surrogate:	1,2-Dichlo	roethane-c	14	9	1 %	Limits:	72-132			

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Rend

Memphis, Tennossee 38133

(901) 213-2400

Fax (901) 213-7440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

Volatile	S	Sample	Matrix Spike			0903106-001BMS					
Prep	Method	5030B	Batch	23771	Date	03/11/09	12:02				
Analytical	Method	8260B	Batch	38225	Date	03/11/09	9 22:56	Dilutio	n Factor 10	Ву	LS
			MS		Spike	Samp	le		QC		
Compour	nd		Conc.	Units	Added	Con	s. %	%Rec	Limits		
Benzene			0.995	mg/L	1.00	< (0.0100	100	80-120		-
2-Butanon	e (MEK)		0.673	mg/L	1.00	<	0.200	67	40-140		
Carbon tet	trachloride		1.03	mg/L	1.00	< (0.0100	103	65-140		
Chloroben	zene		0.953	mg/L	1.00	< (0.0100	95	80-120		
Chloroforn	n		1.01	mg/L	1.00	(0.0466	96	80-120		
1,4-Dichlo	robenzene	:	0.907	mg/L	1.00	< (0.0100	91	75-125		
1,2-Dichlo	roethane		0.908	mg/L	1.00	< (0.0100	91	70-130		
1,1-Dichlo	roethene		0.997	mg/L	1.00	< (0.0100	100	80-120		
Tetrachlor	oethene		0.980	mg/L	1.00	< (0.0100	98	45-150		
Trichloroet	thene		0.952	mg/L	1.00	< (0.0100	95	70-125		
Vinyl chlor	ide		0.952	mg/L	1.00	< (0.0100	. 95	80-120		
	:	Surrogate:	Dibromofluorometha	ne	95	%	Limits:	75-125			
	:	Surrogate:	Toluene-d8		107	%	Limits:	85-120			
	;	Surrogate:	4-Bromofluorobenze	ne	95	%	Limits:	85-118			
	;	Surrogate:	1,2-Dichloroethane-o	14	93	%	Limits:	72-132	•		

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Vihiman Road

(901) 213-2400

Analytical QC Summary Report

AECOM EARTH TECH Order Number

Project

Cedar Chemicals

Description

Volatiles	Sample	Matrix Spike Du	ıplicate		090	3106-001	BMSD		Aqueous
Prep Method	5030B	Batch	23771	Date	03/11/09 12:02	!			
Analytical Method	8260B	Batch	38225	Date	03/11/09 23:30	Dilutio	Dilution Factor 10		
		MSD		Spike	Sample		QC		RPD
Compound		Conc.	Units	Added	Conc.	% Rec	Limits	% RPD	Limit
Benzene		1.02	mg/L	1.00	< 0.0100	102	80-120	2	30
2-Butanone (MEK)		0.736	mg/L	1.00	< 0.200	74	40-140	9	30
Carbon tetrachloride	:	1.06	mg/L	1.00	< 0.0100	. 106	65-140	4	30
Chlorobenzene		0.984	mg/L	1.00	< 0.0100	98	80-120	3	30
Chloroform		1.11	mg/L	1.00	0.0466	106	80-120	10	30
1,4-Dichlorobenzene	9	1.02	mg/L	1.00	< 0.0100	102	75-125	12	30
1,2-Dichloroethane		0.960	mg/L	1.00	< 0.0100	96	70-130	6	30
1,1-Dichloroethene		1.02	mg/L	1.00	< 0.0100	102	80-120	2	30
Tetrachloroethene		0.982	mg/L	1.00	< 0.0100	98	45-150	0	30
Trichloroethene		0.947	mg/L	1.00	< 0.0100	95	70-125	0	30
Vinyl chloride		0.987	mg/L	1.00	< 0.0100	99	80-120	4	30
	Surrogate:	Dibromofluorometha	ne	95	% Limit	ts: 75-125			
	Surrogate:	Toluene-d8		98	% Limit	ts: 85-120			
	Surrogate:	4-Bromofluorobenze	ne	92	! % Limit	ts: 85-118			
	Surrogate:	1,2-Dichloroethane-c	14	95	6 % Limit	ts: 72-132			

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitten Ros

Memphis, Tennossee 38133

(901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report Form 4 Method Blank Summary

Aqueous

Herbicides

AECOM EARTH TECH

Order Number

0903061

Project

Cedar Chemicals

Description

Batch ID

23796

Instrument ID PEST3

23796-LB

This Method Blank applies to the following batch samples:

Lab Sample ID	Lab File ID	Analyzed Date	/ Time	Dilution Factor
23796-LB	P3031609BHRB	03/16/09	23:25	1
23796-LCS	P3031609BHRB	03/16/09	23:48	1
23796-LCSD	P3031609BHRB	03/17/09	0:10	1
0903128-001B	P3031609BHRB	03/17/09	0:33	1
0903128-001BMS	P3031609BHRB	03/17/09	0:55	1
0903128-001BMSD	P3031609BHRB	03/17/09	1:18	1
0903061-009A	P3031609BHRB	03/17/09	2:03	1
0903061-010A	P3031609BHRB	03/17/09	2:25	1
23741-TCLPBLFL1	P3031609BHRB	03/17/09	3:11	1

Qualifiers:

- Surrogate Recovery outside accepted limits
- B Analyte detected in the associated Method Blank
- E Value exceeds method calibration range
- J Estimated Value Analyte below reported detection limit
- MDL Method Dection Limit (unadjusted)
- MRL Method Reporting Limit

- * I Recoveries affected by interferences or high background
- DF Dilution Factor
- H Prepped / Analyzed out of holding time.
- M Minimum value
- MQL Method Quantitation Limit (adjusted)
 - N Refer to attached Non-Compliance Report

Environmental Testing & Consulting, Inc. 2700 Whitnen Road Memphis, Tennossee 38133 (501) 213-2400 Fax (501) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

Description

Organics		anics Method Blank			 	23796-LB	 Aqueous
Prep	Method	8151A	Batch	23796	Date	03/12/09 17:05	
Δnálvti	cal Method	8151Δ	Batch	38333	Date	03/16/09 23:25 Dilution Eactor 1	·Bu Ve

Compound		Result	Units	MQL			
2,4-D		< 0.000100	mg/L	0.000100			
2,4,5-TP (Silvex)	, · ·	< 0.0000300	mg/L	0.0000300			
Dinoseb	,	< 0.00270 ,	mg/L	0.00270			
	Surrogata:	DCAA		70	0/	Limito	20.150

Qualifiers:

Dilution Factor.

MQL Method Quantitation Limit (adjusted)

(901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

TCLP Blank Fluid 1 23741-TCLPBLFL1 Aqueous **Organics** 8151A Batch 23796 03/12/09 17:05 Prep Method Date Analytical Method 8151A Batch 38333 Date 03/17/09 3:11 Dilution Factor 1 KS Ву

Compound	Result	Units	MQL	
2,4-D	< 0.00200	mg/L	0.00200	
2,4,5-TP (Silvex)	< 0.000600	mg/L	0.000600	
Dinoseb	< 0.0540	mg/L	0.0540	

Surrogate: DCAA

Limits: 20-150

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

2790 Whitton Road

Memphis, Tonnossoo 38139

stoc 38133 (\$91) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH
Order Number 0903061

Project

Cedar Chemicals

Description

Organics [,]	Laboratory Co	Laboratory Control Spike				23796-LCS					
Prep Method	8151A	Batch	23796	Date	03/12/09	17:05					
Analytical Method	8151A	Batch	38333	Date	03/16/09	23:48	Dilutio	n Factor 1	By KS		
		LCS		Spike				QC			
Compound		Conc.		Added	% [Rec	Limits			
2,4-D		0.00183	mg/L	0.00250	כ		73	20-150			
2,4,5-TP (Silvex)		0.000200	mg/L	0.000250)		80	20-150			
Dinoseb '		0.00159	mg/L	0.00125	5		127	20-150			
	Surrogate: DCAA			12:	2 %	Limits:	20-150				

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

2700 Volumen Re

Memphis, Tennessee 38133

n 38133 (901) 213-2400

Fax (901) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Project

Cedar Chemicals

Order Number

0903061

Description

Organics	Sample	Sample Matrix Spike					Aqu	Aqueous			
Prep Method	8151A		Batch	23796	Date	03/12/09 17:05					
Analytical Metho	d 8151A		Batch	38333	Date	03/17/09	0:55	Dilutio	n Factor 1	Ву	KS
			MS		Spike	Sampl	e .		QC		
Compound			Conc.	Units	Added	Conc.	. 9	% Rec	Limits		
2,4-D			0.0347	mg/L	0.0500	0.0	0739	55	20-150		
2,4,5-TP (Silvex)			0.00394	mg/L	0.00500	0.00	0600	79	20-150		
Dinoseb			0.0265	mg/L	0.0250	0.0	0142	100	20-150		
	Surrogate:	DCAA			114	4 %	Limits	: 20-150			

Qualifiers:

DF Dilution Factor

MQL Method Quantitation Limit (adjusted)

Environmental Testing & Consulting, Inc. 2760 Whitipen Road Memphis, Tennossee 38139 (801) 213-2400 Fax (801) 213-2440

Analytical QC Summary Report

AECOM EARTH TECH

Order Number 0903061 Project

Cedar Chemicals

Description

Organics	Sample	Matrix Spike D	uplicate		Aqueous						
Prep Method	8151A	Batch	23796	Date	te 03/12/09 17:05						
Analytical Method	8151A	Batch	38333	Date	03/17/09 1:18	Dilutio	n Factor 1		By KS		
		MSD		Spike	Sample		QC		RPD		
Compound	•	Conc.	Units	Added	Conc.	% Rec	Limits	% RPD	Limit		
2,4-D		0.0329	mg/L	0.0500	0.00739	51	20-150	5	30		
2,4,5-TP (Silvex)		0.00346	mg/L	0.00500	0.000600	69	20-150	13	30		
Dinoseb		0.0243	mg/L	0.0250	0.00142	92	20-150	8	30		
	Surrogate:	DCAA		. 89	9 % Limi	ts: 20-150					

Qualifiers:

Dilution Factor

MQL Method Quantitation Limit (adjusted)

ORIGIN ID: LQKA (864) 234-3000 PAT BRYANT AECOM EARTH TECH 10 PATEWOOD DRIVE SUITE 500 GREENVILLE, SC 29615 UNITED STATES US Ship Date: 30MAR09 ActWgt: 1.8 LB System#: 525194/CAFE2360 Account: S *********

TO RYAN BENEFIELD

CHIEF OF HAZARDOUS WASTE DIV. ARKANSAS DEPT. OF ENV. QUALITY 5301 NORTHSHORE DRIVE NORTH LITTLE ROCK, AR 721185317 FedEx Express

Ref: 104336.06 L. ALEXANDER

elivery Address Barcode

BILL SENDER

PRIORITY OVERNIGHT

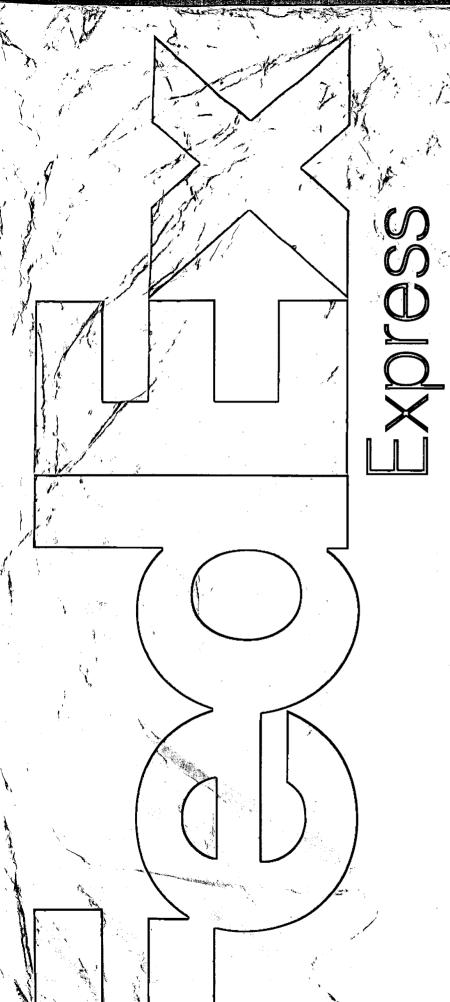
4099 9080 9515 Form 9291

TUE Deliver By: 31MAR09

MEM AA

72118

- AR – US


XH LITA

The World On Time

For FedEx Ex

1

Align bottom of Peel and

